Creating accurate, analytic atom-atom potentials for small organic molecules from first principles can be a time-consuming and computationally intensive task, particularly if we also require them to include explicit polarization terms, which are essential in many systems. We describe how the CamCASP suite of programs can be used to generate such potentials using some of the most accurate electronic structure methods currently applicable. We derive the long-range terms from monomer properties and determine the short-range anisotropy parameters by a novel and robust method based on the iterated stockholder atom approach. Using these techniques, we develop distributed multipole models for the electrostatic, polarization, and dispersion interactions in the pyridine dimer and develop a series of many-body potentials for the pyridine system. Even the simplest of these potentials exhibits root mean square errors of only about 0.6 kJ mol(-1) for the low-energy pyridine dimers, significantly surpassing the best empirical potentials. Our best model is shown to support eight stable minima, four of which have not been reported before in the literature. Further, the functional form can be made systematically more elaborate so as to improve the accuracy without a significant increase in the human-time spent in their generation. We investigate the effects of anisotropy, rank of multipoles, and choice of polarizability and dispersion models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.5b01241 | DOI Listing |
Nanoscale
January 2025
Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B5-209 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia, Spain.
The NRAS-mutant subset of melanoma is one of the most aggressive and lethal types associated with poor overall survival. Unfortunately, a low understanding of the NRAS-mutant dynamic behavior has led to the lack of clinically approved therapeutic agents able to directly target NRAS oncogenes. In this work, accurate local structures of NRAS and its mutants have been fully explored through the corresponding free energy surfaces obtained by microsecond scale well-tempered metadynamics simulations.
View Article and Find Full Text PDFJ Mol Model
November 2024
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
Context: Based on the methods of quantum chemistry and atom-atom potentials, the molecular and crystal structure of a number of high-energy pyrazines was modeled: unsubstituted diazines, as well as fully nitrated 1,4-diazabenzenes, their oxides and polymorphs. The enthalpies of formation, densities of molecular crystals, and some performance characteristics of these compounds were determined. The parameters of decomposition of substances were estimated.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2024
Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flow. Using Gaussian kernels and atom-atom distances as the features, the ESPs for water and methanol are shown to improve by at least a factor of 2 compared with point charge models fit to an ensemble of structures.
View Article and Find Full Text PDFJ Cheminform
July 2024
Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics and School for Embedded and Composite Artificial Intelligence (SECAI), Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany.
Purpose: Reaction databases are a key resource for a wide variety of applications in computational chemistry and biochemistry, including Computer-aided Synthesis Planning (CASP) and the large-scale analysis of metabolic networks. The full potential of these resources can only be realized if datasets are accurate and complete. Missing co-reactants and co-products, i.
View Article and Find Full Text PDFJ Phys Condens Matter
June 2024
C-STEEL Center for Steel Electrification by Electrosynthesis, Argonne National Laboratory, Argonne, IL 60438, United States of America.
Bridging the gap between diffuse x-ray or neutron scattering measurements and predicted structures derived from atom-atom pair potentials in disordered materials, has been a longstanding challenge in condensed matter physics. This perspective gives a brief overview of the traditional approaches employed over the past several decades. Namely, the use of approximate interatomic pair potentials that relate three-dimensional structural models to the measured structure factor and its' associated pair distribution function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!