Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

Biomaterials

Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan; Satellite Laboratory, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan. Electronic address:

Published: October 2016

A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2016.06.046DOI Listing

Publication Analysis

Top Keywords

ros scavenging
12
scavenging ability
12
bnp-treated group
12
boron cluster-containing
8
cluster-containing redox
8
redox nanoparticles
8
boron neutron
8
neutron capture
8
capture therapy
8
high therapeutic
8

Similar Publications

WOX transcription factors (TFs) are plant specific transcription regulatory factors that have a momentous role in maintaining plant growth and development and responding to abiotic stress. In this study, a total of 13 PdbWOX genes were identified. qRT-PCR analyses showed that 13 PdbWOX genes were responsive to salt stress.

View Article and Find Full Text PDF

The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.

View Article and Find Full Text PDF

Lung cancer continues to be the second most common cancer diagnosed and the main cause of cancer-related death globally, which requires novel and effective treatment strategies. When considering treatment options, non-small cell lung cancer (NSCLC) remained a challenge, seeking new therapeutic strategies High-power microwave (HPM) progressions have facilitated the advancement of new technologies as well as improvements to those already in use. The impact of HPM on NSCLC has not been investigated before.

View Article and Find Full Text PDF

Hyaluronan-modified nanoceria for dry eye disease treatment.

J Colloid Interface Sci

December 2024

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China. Electronic address:

Dry eye disease (DED), a prevalent ocular disorder, affects nearly half the global population, bringing enormous health and economic burden. Currently, the predominant treatments for DED involve the administration of artificial tears, which is often hindered by continuous administration and constant reactive oxygen species (ROS) stimulus. Therefore, hyaluronan (HA)-modified cerium oxide (CeO) nanoparticles, HA-CeO, were developed to achieve simultaneous ROS scavenging and enhanced tear film stability.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!