Melanoma is characterized by a high degree of chromosome instability (CIN), the loss or gain of entire chromosomes or pieces of chromosomes. Also, CIN is likely to drive the progression of benign melanocytic lesions to malignant tumors, although very little is known about the acquisition of the mechanisms that promote CIN along this progression. Here, we describe the development of a model system to study the progression of melanomagenesis starting with normal human melanocytes followed by inactivation of the p53 and pRb tumor suppressors by addition of the E6/E7 proteins. The cells were then transduced with a growth-promoting, constitutionally-active mutant NRAS. The addition of E6/E7 and E6/E7 NRAS was found to give a growth advantage to the cells compared to normal melanocytes and a statistically significant gain of aneuploidy; aneuploidy was 24.7% in primary melanocytes, 33.8% in E6/E7 melanocytes, and 70.5% in E6/E7 NRAS melanocytes. Further, we found an increase in tetraploid cells in the cell model which was statistically significant between primary melanocytes and E6/E7, NRAS melanocytes. We also observed an increase in aneuploid cells between three population doublings in primary melanocytes, whereas this increase was not seen in the E6/E7 melanocytes. Together, these data demonstrate that this model system utilizing stepwise addition of genetic mutations driving melanomagenesis is a useful tool to study CIN and could even be used to study the mechanisms responsible for these alterations in genetic makeup.
Download full-text PDF |
Source |
---|
J Biomed Sci
September 2021
Department of Pathology, Johns Hopkins University, CRB II, 1550 Orleans St, Baltimore, MD, 21287, USA.
Background: Human Papillomavirus type 16 (HPV16) has been associated with a subset of head and neck cancers. Two HPV encoded oncogenic proteins, E6 and E7, are important for the malignant progression of HPV-associated cancers. A spontaneous HPV16 E6/E7-expressing oral tumor model in human HLA-A2 (AAD) transgenic mice will be important for the development of therapeutic HPV vaccines for the control of HPV-associated head and neck cancers.
View Article and Find Full Text PDFCancer Immunol Res
March 2018
Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland.
Human papillomavirus type 16 (HPV16) is the etiologic factor for cervical cancer and a subset of oropharyngeal cancers. Although several prophylactic HPV vaccines are available, no effective therapeutic strategies to control active HPV diseases exist. Tumor implantation models are traditionally used to study HPV-associated buccal tumors.
View Article and Find Full Text PDFPLoS Pathog
November 2017
Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Cutaneous human papillomaviruses (HPVs) are considered as cofactors for non-melanoma skin cancer (NMSC) development, especially in association with UVB. Extensively studied transgenic mouse models failed to mimic all aspects of virus-host interactions starting from primary infection to the appearance of a tumor. Using the natural model Mastomys coucha, which reflects the human situation in many aspects, we provide the first evidence that only UVB and Mastomys natalensis papillomavirus (MnPV) infection strongly promote NMSC formation.
View Article and Find Full Text PDFPathol Res Pract
February 2017
The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital in Hradec Kralove, Czechia.
The aim of the study was detailed clinicopathological investigation of SMARCB1/INI1-deficient sinonasal carcinomas, including molecular genetic analysis of mutational status and DNA methylation of selected protooncogenes and tumor suppressor genes by means of next generation sequencing (NGS) and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). A total of 4/56 (7%) cases of SMARCB1/INI1-deficient carcinomas were detected among 56 sinonasal carcinomas diagnosed over a 19year period using immunohistochemical screening. The series comprised 3 males and 1 female, aged 27-76 years (median 64 years).
View Article and Find Full Text PDFSurg Technol Int
October 2016
Cellay, Inc. Cambridge, Massachusetts.
Melanoma is characterized by a high degree of chromosome instability (CIN), the loss or gain of entire chromosomes or pieces of chromosomes. Also, CIN is likely to drive the progression of benign melanocytic lesions to malignant tumors, although very little is known about the acquisition of the mechanisms that promote CIN along this progression. Here, we describe the development of a model system to study the progression of melanomagenesis starting with normal human melanocytes followed by inactivation of the p53 and pRb tumor suppressors by addition of the E6/E7 proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!