A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ubiquitously expressed genes participate in cell-specific functions via alternative promoter usage. | LitMetric

AI Article Synopsis

  • Understanding how different cell types develop their unique identities is a key question in biology.
  • Researchers identified 110 specific transcripts from 104 commonly expressed genes in mouse embryonic stem cells that have alternative transcription start sites (SATS isoforms), primarily linked to stem cell functions.
  • This study shows that transcription factors unique to specific cell types can modify these ubiquitously expressed genes to create new roles essential for maintaining the characteristics of those cell types.

Article Abstract

How do different cell types acquire their specific identities and functions is a fundamental question of biology. Previously significant efforts have been devoted to search for cell-type-specifically expressed genes, especially transcription factors, yet how do ubiquitously expressed genes participate in the formation or maintenance of cell-type-specific features remains largely unknown. Here, we have identified 110 mouse embryonic stem cell (mESC) specifically expressed transcripts with cell-stage-specific alternative transcription start sites (SATS isoforms) from 104 ubiquitously expressed genes, majority of which have active epigenetic modification- or stem cell-related functions. These SATS isoforms are specifically expressed in mESCs, and tend to be transcriptionally regulated by key pluripotency factors through direct promoter binding. Knocking down the SATS isoforms of Nmnat2 or Usp7 leads to differentiation-related phenotype in mESCs. These results demonstrate that cell-type-specific transcription factors are capable to produce cell-type-specific transcripts with alternative transcription start sites from ubiquitously expressed genes, which confer ubiquitously expressed genes novel functions involved in the establishment or maintenance of cell-type-specific features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007564PMC
http://dx.doi.org/10.15252/embr.201541476DOI Listing

Publication Analysis

Top Keywords

expressed genes
24
ubiquitously expressed
20
sats isoforms
12
genes participate
8
transcription factors
8
maintenance cell-type-specific
8
cell-type-specific features
8
alternative transcription
8
transcription start
8
start sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!