Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981675 | PMC |
http://dx.doi.org/10.1128/MMBR.00076-15 | DOI Listing |
J Med Internet Res
January 2025
AIMS Lab, Center for Neurosciences, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
Background: Cognitive deterioration is common in multiple sclerosis (MS) and requires regular follow-up. Currently, cognitive status is measured in clinical practice using paper-and-pencil tests, which are both time-consuming and costly. Remote monitoring of cognitive status could offer a solution because previous studies on telemedicine tools have proved its feasibility and acceptance among people with MS.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Savannah River Ecology Lab, University of Georgia, Aiken, SC, USA.
Legacy contaminants tied to energy production are a worldwide concern. Coal combustion residues (CCRs) contain high concentrations of potentially toxic trace elements such as arsenic (As), mercury (Hg), and selenium (Se), which can persist for decades after initial contamination. CCR disposal methods, including aquatic settling basins and landfills, can facilitate environmental exposure through intentional and accidental releases.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of Siena, Siena, Italy.
Objectives: To assess the lung involvement in patients with Still's disease, an inflammatory disease assessing both children and adults. To exploit possible associated factors for parenchymal lung involvement in these patients.
Methods: A multicentre observational study was arranged assessing consecutive patients with Still's disease characterized by the lung involvement among those included in the AIDA (AutoInflammatory Disease Alliance) Network Still's Disease Registry.
Chemistry
January 2025
Indian Institute of Science Education and Research Bhopal Department of Chemistry, Chemistry, Room No. 226, Academic Block - 2, Indore By-pass Road, Bhauri, 462066, Bhopal, INDIA.
Unraveling the electronic structure of metal complexes can bring various catalytic possibilities for hydrogen evolution reaction (HER). However, the electronic effect of metal and ligands modulating and switching the reaction center for HER has yet to be comprehensively analyzed. Herein, we report nickel selenoether electrocatalysts which show tunable reaction centers (nickel or ligand) for HER using mild weak acetic acid in less deprotonating DMF solvent.
View Article and Find Full Text PDFCJEM
January 2025
Emergency Department, Hôpital Lariboisière, APHP, Paris, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!