Ontogeny reveals function and evolution of the hadrosaurid dinosaur dental battery.

BMC Evol Biol

Department of Pathology and Anatomical Sciences, Integrative Anatomy, University of Missouri, Columbia, MO, 65201, USA.

Published: July 2016

Background: Hadrosaurid dinosaurs, dominant Late Cretaceous herbivores, possessed complex dental batteries with up to 300 teeth in each jaw ramus. Despite extensive interest in the adaptive significance of the dental battery, surprisingly little is known about how the battery evolved from the ancestral dinosaurian dentition, or how it functioned in the living organism. We undertook the first comprehensive, tissue-level study of dental ontogeny in hadrosaurids using several intact maxillary and dentary batteries and compared them to sections of other archosaurs and mammals. We used these comparisons to pinpoint shifts in the ancestral reptilian pattern of tooth ontogeny that allowed hadrosaurids to form complex dental batteries.

Results: Comparisons of hadrosaurid dental ontogeny with that of other amniotes reveals that the ability to halt normal tooth replacement and functionalize the tooth root into the occlusal surface was key to the evolution of dental batteries. The retention of older generations of teeth was driven by acceleration in the timing and rate of dental tissue formation. The hadrosaurid dental battery is a highly modified form of the typical dinosaurian gomphosis with a unique tooth-to-tooth attachment that permitted constant and perfectly timed tooth eruption along the whole battery.

Conclusions: We demonstrate that each battery was a highly dynamic, integrated matrix of living replacement and, remarkably, dead grinding teeth connected by a network of ligaments that permitted fine scale flexibility within the battery. The hadrosaurid dental battery, the most complex in vertebrate evolution, conforms to a surprisingly simple evolutionary model in which ancestral reptilian tissue types were redeployed in a unique manner. The hadrosaurid dental battery thus allows us to follow in great detail the development and extended life history of a particularly complex food processing system, providing novel insights into how tooth development can be altered to produce complex dentitions, the likes of which do not exist in any living vertebrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964017PMC
http://dx.doi.org/10.1186/s12862-016-0721-1DOI Listing

Publication Analysis

Top Keywords

dental battery
20
hadrosaurid dental
16
dental
11
battery
8
complex dental
8
dental batteries
8
dental ontogeny
8
ancestral reptilian
8
battery highly
8
hadrosaurid
6

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

In the human body, bioelectric cues are crucial for tissue stimulation and regeneration. Electrical stimulation (ES) significantly enhances the regeneration of nerves, bones, cardiovascular tissues, and wounds. However, the use of conventional devices with stimulating metal electrodes is invasive and requires external batteries.

View Article and Find Full Text PDF

The microgrid (MG) faces significant security issues due to the two-way power and information flow. Integrating an Energy Management System (EMS) to balance energy supply and demand in Malaysian microgrids, this study designs a Fuzzy Logic Controller (FLC) that considers intermittent renewable sources and fluctuating demand patterns. FLC offers a flexible solution to energy scheduling effectively assessed by MATLAB/Simulink simulations.

View Article and Find Full Text PDF

A handheld biofluorometric system for acetone detection in exhaled breath condensates.

Analyst

January 2025

Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

As a marker of human metabolism, acetone is important for lipid metabolism monitoring and early detection of diabetes. In this study, we developed a handheld biosensor for acetone based on fluorescence detection by utilizing the enzymatic reaction of secondary alcohol dehydrogenase (S-ADH) with β-nicotinamide adenine dinucleotide (NADH, = 340 nm, = 490 nm). In the reaction, NADH is oxidized when acetone is reduced to 2-propanol by S-ADH, and the acetone concentration can be measured by detecting the amount of NADH consumed in this reaction.

View Article and Find Full Text PDF

Recently, interest has surged in the environmental and biomedical applications of two-dimensional transition metal borides, commonly referred to as MBenes. These materials have emerged as promising candidates for energy storage devices, such as batteries and supercapacitors. Additionally, MBenes have shown remarkable catalytic activity due to their high surface area and tunable electronic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!