Background: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations.
Methods: We sent out a survey to 16 genetic centers performing SCN1A testing.
Results: We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors.
Conclusion: We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947864 | PMC |
http://dx.doi.org/10.1002/mgg3.217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!