High Levels of Residue within Polymeric Hollow Fiber Membranes Used for Blood Oxygenation.

ASAIO J

From the *Department of Biomedical Engineering, and †Department of Surgery, University of Kentucky, Lexington, Kentucky.

Published: November 2017

A number of research teams are developing surface coatings for hollow fiber membrane (HFM) blood oxygenators to improve their biocompatibility and service life. Surface coating techniques can be quite sensitive to the presence of contaminants on the exterior surface of the hollow fibers. We found large amounts of leachable oils associated with several commercial HFMs, i.e., as much as 2.5-7.5 weight percent. Leachable residues were suspected when a surface coating, a surface-initiated atom transfer radical polymerization (s-ATRP) of poly(ethylene glycol) methacrylate, resulted in areas of 100 µm devoid of coatings on the exterior surfaces of HFMs. After leaching residual oils, s-ATRP coatings were uniform and continuous across the hollow fibers. Therefore, removal of residual material should be considered before applying coating technologies to commercial HFMs. The effects of such leachable agents on the performance of blood oxygenators are not known.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAT.0000000000000424DOI Listing

Publication Analysis

Top Keywords

hollow fiber
8
blood oxygenators
8
surface coating
8
hollow fibers
8
commercial hfms
8
high levels
4
levels residue
4
residue polymeric
4
hollow
4
polymeric hollow
4

Similar Publications

Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay.

Sci Bull (Beijing)

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.

View Article and Find Full Text PDF

High-Performance Polyolefin Material: Synthesis, Properties, and Application of Poly(4-Methyl-1-pentene).

Int J Mol Sci

January 2025

School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.

As a kind of high-performance thermoplastic crystalline resin, poly(4-methyl-1-pentene) (PMP) is characterized by its low density, low dielectric constant, exceptional mechanical and chemical properties, high transparency, and gas permeability. PMP has recently received more attention since COVID-19, because it is used as a hollow-fiber membrane for extracorporeal membrane oxygenation (ECMO) based on its high permeability and excellent biocompatibility. This review summarizes the chemical structure, synthesis, properties, and application of PMP.

View Article and Find Full Text PDF

This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging.

View Article and Find Full Text PDF

Intra- and Interspecies Conjugal Transfer of Plasmids in Gram-Negative Bacteria.

Biomedicines

January 2025

Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia.

Plasmid-mediated resistance is a significant mechanism that contributes to the gradual decrease in the efficacy of antibiotics from various classes, including carbapenems. The aim of this study is to investigate the frequency of transfer of carbapenemase-encoding plasmids from to and . Matings were performed on agar with subsequent isolation of transconjugant, recipient, and donor colonies.

View Article and Find Full Text PDF

Recovery of Iodine in the Gaseous Phase Using the Silicone Hollow Fiber Membrane Module.

Membranes (Basel)

January 2025

Godo Shigen Co., Ltd., 1545-1 Nanaido, Chosei-mura, Chiba 299-4333, Japan.

Iodine, being an important resource, must be recovered and reused. Iodine is not only attracted to the hydrophobic silicone membrane but also easily vaporized. In this study, we explored the use of five types of silicone hollow fiber membrane modules (SFMMs) for separating iodine in the gaseous phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!