Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bioactivation of 5-hydroxy-[carbonyl-(14)C]thalidomide, a known metabolite of thalidomide, by human artificial or native cytochrome P450 3A enzymes, and nonspecific binding in livers of mice was assessed using two-dimensional electrophoresis combined with accelerator mass spectrometry. The apparent major target proteins were liver microsomal cytochrome c oxidase subunit 6B1 and ATP synthase subunit α in mice containing humanized P450 3A genes or transplanted humanized liver. Liver cytosolic retinal dehydrogenase 1 and glutathione transferase A1 were targets in humanized mice with P450 3A and hepatocytes, respectively. 5-Hydroxythalidomide is bioactivated by human P450 3A enzymes and trapped with proteins nonspecifically in humanized mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5282975 | PMC |
http://dx.doi.org/10.1021/acs.chemrestox.6b00210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!