Generation of Targeted Genomic Deletions Through CRISPR/Cas System in Zebrafish.

Methods Mol Biol

Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, No 5 Yiheyuan Rd., Haidian District, Beijing, 100871, P. R. China.

Published: January 2018

Using TALEN or CRISPR/Cas system to induce small indels into coding sequences has been implicated in broad applications for reverse genetic studies of many organisms including zebrafish. However, complete deletion of a large gene or noncoding gene(s) or removing a large genomic fragment spanning several genes or other chromosomal elements is preferred in various cases, as well as inducing chromosomal inversions. Here, we describe the detailed protocols for the generation of chromosomal deletion mutations mediated by Cas9 and a pair of gRNAs and the evaluation for the efficiencies in F0 founder fish and of germline transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-3771-4_5DOI Listing

Publication Analysis

Top Keywords

crispr/cas system
8
generation targeted
4
targeted genomic
4
genomic deletions
4
deletions crispr/cas
4
system zebrafish
4
zebrafish talen
4
talen crispr/cas
4
system induce
4
induce small
4

Similar Publications

Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in .

Bioengineered

December 2025

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.

Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.

View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

[Gene editing is changing the treatment of hereditary diseases].

Lakartidningen

January 2025

docent, verksamhetschef, Karolinska centrum för cellterapi (KCC), Karolinska universitetssjukhuset, Stockholm; Karolins-ka ATMP-centrum; institutionen för laboratorie-medicin, Karolinska institutet.

Gene editing is a novel technology within gene therapy, which changes sequences in chromosomal DNA with precision. Even if there are alternative strategies, the Nobel Prize-winning CRISPR/Cas technology has become the dominating principle. During recent years base editing and prime editing, permitting editing without DNA double-strand breaks, have been developed.

View Article and Find Full Text PDF

Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics.

Mol Pharm

January 2025

ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China.

Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy.

View Article and Find Full Text PDF

Dairy production facilities represent a unique ecological niche for bacteriophages of lactic acid bacteria. Throughout evolution, bacteria have developed a wide range of defense mechanisms against viral infections caused by bacteriophages. The CRISPR-Cas system is of particular interest due to its adaptive nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!