The origin of somatic cell lineages during testicular development is controversial in mammals. Employing basal amphibian tetrapod Xenopus tropicalis we established a cell culture derived from testes of juvenile male. Expression analysis showed transcription of some pluripotency genes and Sertoli cell, peritubular myoid cell and mesenchymal cell markers. Transcription of germline-specific genes was downregulated. Immunocytochemistry revealed that a majority of cells express vimentin and co-express Sox9 and smooth muscle α-actin (Sma), indicating the existence of a common progenitor of Sertoli and peritubular myoid cell lineages. Microinjection of transgenic, red fluorescent protein (RFP)-positive somatic testicular cells into the peritoneal cavity of X. tropicalis tadpoles resulted in cell deposits in heart, pronephros and intestine, and later in a strong proliferation and formation of cell-to-cell net growing through the tadpole body. Immunohistochemistry analysis of transplanted tadpoles showed a strong expression of vimentin in RFP-positive cells. No co-localization of Sox9 and Sma signals was observed during the first three weeks indicating their dedifferentiation to migratory-active mesenchymal cells recently described in human testicular biopsies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5051652 | PMC |
http://dx.doi.org/10.1242/bio.019265 | DOI Listing |
FEBS J
December 2024
UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility.
View Article and Find Full Text PDFMicrosc Microanal
October 2024
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China.
This comprehensive study delved into the detrimental effects of cadmium (Cd), a toxic heavy metal, on the testicular lamina propria (LP), a key player in spermatogenesis, and the maintenance of testicular stem cell niches. Utilizing transmission electron microscopy, immunohistochemistry, and double-labeling immunofluorescence, the research characterized the structural and cellular components of mouse testicular LP under Cd exposure and investigated the protective effects of quercetin. The findings illustrated that Cd exposure results in significant morphological and cellular modifications within the LP, including the apoptosis of peritubular myoid cells, an upsurge in CD34+ stromal cells displaying anti-apoptotic behaviors, and an excessive production of collagen Type I fibers and extracellular matrix.
View Article and Find Full Text PDFHum Reprod
October 2024
Biology of the Testis Lab, Research Group Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
Study Question: Do testis-specific cells have a normal karyotype in non-mosaic postpubertal Klinefelter syndrome (KS) patients with focal spermatogenesis and in non-mosaic prepubertal KS boys?
Summary Answer: Spermatogonia have a 46, XY karyotype, and Sertoli cells surrounding these spermatogonia in postpubertal patients also have a 46, XY karyotype, whereas, in prepubertal KS boys, Sertoli cells surrounding the spermatogonia still have a 47, XXY karyotype.
What Is Known Already: A significant proportion of patients with non-mosaic KS can have children by using assisted reproductive techniques thanks to focal spermatogenesis. However, the karyotype of the cells that are able to support focal spermatogenesis has not been revealed.
Life Sci
October 2024
Institute of Biomedical Technology, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Testicular organoids have great potential for maintaining male fertility and even restoring male infertility. However, existing studies on generating organoids with testis-specific structure and function are scarce and come with many limitations. Research on cryopreservation of testicular organoids is even more limited, and inappropriate cryopreservation methods may result in the loss of properties in resuscitated or regenerated organoids, rendering them unsuitable for clinical or research needs.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
May 2024
( 610041) Laboratory of Reproductive Genetics and Epigenetic Regulatio, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
Infertility affects an estimated 10 to 15 percent of couples worldwide, with approximately half of the cases attributed to male-related issues. Most men diagnosed with infertility exhibit symptoms such as oligospermia, asthenospermia, azoospermia, and compromised sperm quality. Spermatogenesis is a complex and tightly coordinated process of germ cell differentiation, precisely regulated at transcriptional, posttranscriptional, and translational levels to ensure stage-specific gene expression during the development of spermatogenic cells and normal spermiogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!