This work presents new chemical sensing devices called "membraneless gas-separation microfluidic paper-based analytical devices" (MBL-GS μPADs). MBL-GS μPADs were designed to make fabrication of the devices simple and user-friendly. MBL-GS μPADs offer direct quantitative analysis of volatile and nonvolatile compounds. Porous hydrophobic membrane is not needed for gas-separation, which makes fabrication of the device simple, rapid and low-cost. A MBL-GS μPAD consists of three layers: "donor layer", "spacer layer", and "acceptor layer". The donor and acceptor layers are made of filter paper with a printed pattern. The donor and acceptor layers are mounted together with a spacer layer in between. This spacer is a two-sided mounting tape, 0.8 mm thick, with a small disc cut out for the gas from the donor zone to diffuse to the acceptor zone. Photographic image of the color that is formed by the reagent in the acceptor layer is analyzed using the ImageJ program for quantitation. Proof of concept of the MBL-GS μPADs was demonstrated by analyzing standard solutions of ethanol, sulfide, and ammonium. Optimization of the MBL-GS μPADs was carried out for direct determination of ammonium in wastewaters and fertilizers to demonstrate the applicability of the system to real samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.6b02103DOI Listing

Publication Analysis

Top Keywords

mbl-gs μpads
20
gas-separation microfluidic
8
microfluidic paper-based
8
paper-based analytical
8
volatile nonvolatile
8
nonvolatile compounds
8
donor acceptor
8
acceptor layers
8
mbl-gs
6
μpads
5

Similar Publications

Background: Understanding the integrated immunogenomic landscape of advanced prostate cancer (APC) could impact stratified treatment selection.

Methods: Defective mismatch repair (dMMR) status was determined by either loss of mismatch repair protein expression on IHC or microsatellite instability (MSI) by PCR in 127 APC biopsies from 124 patients (Royal Marsden [RMH] cohort); MSI by targeted panel next-generation sequencing (MSINGS) was then evaluated in the same cohort and in 254 APC samples from the Stand Up To Cancer/Prostate Cancer Foundation (SU2C/PCF). Whole exome sequencing (WES) data from this latter cohort were analyzed for pathogenic MMR gene variants, mutational load, and mutational signatures.

View Article and Find Full Text PDF

Simple and green method for direct quantification of hypochlorite in household bleach with membraneless gas-separation microfluidic paper-based analytical device.

Talanta

September 2018

Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.

This work presents development of a microfluidic paper-based analytical device (µPAD) for direct determination of hypochlorite in household bleach. The recent design of a membraneless gas-separation microfluidic paper-based analytical device (MBL-GS µPAD) was employed to fabricate the hypochlorite-µPAD. Chlorine gas is generated in the µPAD via acidification of an aliquot of sample loaded on to the donor reservoir located at the bottom layer of the μPAD.

View Article and Find Full Text PDF

This work presents new chemical sensing devices called "membraneless gas-separation microfluidic paper-based analytical devices" (MBL-GS μPADs). MBL-GS μPADs were designed to make fabrication of the devices simple and user-friendly. MBL-GS μPADs offer direct quantitative analysis of volatile and nonvolatile compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!