The aim of the study was to investigate the regeneration and migration of neuronal progenitor cells of the enteric nervous system during wound healing after intestinal anastomosis in the rat ileum.  Experiments were performed in a rat model of ileoileal anastomosis. Rats were humanely killed on day 2 or day 10 after anastomosis, and the anastomotic region was compared with ileum of healthy rats. Immunofluorescent staining was performed with protein gene product 9.5, nestin, and S100 antibodies. Ganglia of the anastomotic region in both the myenteric and submucosal plexus were counted, and their diameters were measured and compared between groups.  Analysis of number and diameter of ganglia in both myenteric and submucosal plexus showed individual alterations as a reaction to the surgical manipulation. Significantly less ganglia were found in the submucosal plexus in the operated groups at both day 2 ( < 0.01) and day 10 ( < 0.01) than in the control group. In the myenteric plexus in the operated group, there was a difference in the number of ganglia at day 2, but ganglia count had recovered at day 10 and was not significantly different from the control group. However, the diameter of ganglia in the myenteric plexus still significantly decreasing on day 10 after surgery than in the control group ( = 0.046). Nestin and S100 double-staining showed an increased expression of nestin around the anastomotic wound.  Our findings suggest a regenerative potential of the enteric nervous system after the surgical ileoileal anastomosis. The myenteric plexus appears to recover faster than the submucosal plexus. This recovery might be driven by nestin-positive neuronal progenitor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0036-1586200DOI Listing

Publication Analysis

Top Keywords

submucosal plexus
12
enteric nervous
8
nervous system
8
rat model
8
anastomotic region
8
myenteric submucosal
8
regenerative capacity
4
capacity enteric
4
system ileoileal
4
ileoileal anastomoses
4

Similar Publications

Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.

View Article and Find Full Text PDF

Hirschsprung's (HSCR) disease, also known as aganglionic megacolon, or congenital intestinal aganglionosis affects roughly 1 out of every 5000 newborns. It is a birth defect characterized by the partial or complete loss of ganglion cells in the myenteric and submucosal plexus of the distal intestine which leads to ineffective peristalsis, constipation, and obstruction. Clinical assessment and radiological observations might imply HSCR disease, but definitive diagnosis requires biopsy interpretation and confirmation of ganglion cell loss.

View Article and Find Full Text PDF

How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner.

View Article and Find Full Text PDF

Chemotherapy-Induced Neuropathy Affecting the Gastrointestinal Tract.

Neurogastroenterol Motil

December 2024

Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.

Article Synopsis
  • Cancer treatments can lead to severe gastrointestinal side effects, both acute (short-term) and chronic (long-term), impacting patients' overall health.
  • This article reviews chemotherapy's neurotoxic effects on the enteric nervous system (ENS) and how chemotherapy-induced enteric neuropathy (CIEN) may cause persistent gastrointestinal dysfunctions.
  • Research indicates that CIEN results in reduced nerve cell density and altered neuronal activity in the ENS, affecting gut functions and potentially leading to brain-gut axis disorders, highlighting the need for more research in this overlooked area.
View Article and Find Full Text PDF

Microplastic is an environmental hazard to which both animals and humans are exposed. Current reports show that it can cause inflammation, including in the gastrointestinal tract. To examine the impact on the ileum, 15 eight-week-old gilts (five individuals/group) were exposed to PET microplastics (7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!