The present work discloses how high-quality dispersion of fine particles of cobalt ferrite (CF) could be attained on nitrogen-doped reduced graphene oxide (CF/N-rGO) and how this material in association with a microporous carbon phase could deliver significantly enhanced activity toward electrochemical oxygen reduction reaction (ORR). Our study indicates that the microporous carbon phase plays a critical role in spatially separating the layers of CF/N-rGO and in creating a favorable atmosphere to ensure the seamless distribution of the reactants to the active sites located on CF/N-rGO. In terms of the ORR current density, the heat-treated hybrid catalyst at 150 °C (CF/N-rGO-150) is found to be clearly outperforming (7.4 ± 0.5 mA/cm(2)) the state-of-the-art 20 wt % Pt-supported carbon catalyst (PtC) (5.4 ± 0.5 mA/cm(2)). The mass activity and stability of CF-N-rGO-150 are distinctly superior to PtC even after 5000 electrochemical cycles. As a realistic system level exploration of the catalyst, testing of a primary zinc-air battery could be demonstrated using CF/N-rGO-150 as the cathode catalyst. The battery is giving a galvanostatic discharge time of 15 h at a discharge current density of 20 mA/cm(2) and a specific capacity of ∼630 mAh g(-1) in 6 M KOH by using a Zn foil as the anode. Distinctly, the battery performance of this system is found to be superior to that of PtC in less concentrated KOH solution as the electrolyte.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b05416 | DOI Listing |
Small
January 2025
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Liaoning, Dalian, 116024, China.
Membrane technology has been explored for separating helium from hydrogen in natural gas reservoirs, a process that remains extremely challenging due to the sub-Ångstrom size difference between H and He molecules. Reverse-selective H/He separation membranes offer multiple advantages over conventional helium-selective membranes, which, however, suffer from low H/He selectivity. To address this hurdle, a novel approach is proposed to tune the ultra-micropores of carbon molecular sieves (CMS) membranes through fluorination of the polymer precursor.
View Article and Find Full Text PDFEnviron Res
January 2025
Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, MS, 79804-970, Brazil. Electronic address:
Transforming lignocellulosic biomass waste into value-added materials like porous carbons offers a sustainable and increasingly important solution for its efficient management within a circular economy framework. Although the heteroatom-doping process enhances oxygen- or nitrogen-containing functionalities on porous carbons, it often leads to losses in structural integrity and other key functionalities. This study presents a novel protocol to produce N-doped porous carbons that efficiently introduces nitrogen groups while improving surface area, microporosity definition and the concentration of oxygen-containing functionalities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Automotive Studies, Tongji University, Shanghai 201804, China.
Proton exchange membrane fuel cell (PEMFC) is considered the next promising generation of power devices for vehicles. The microporous layer (MPL) improves the performance through effective water management. In this study, local hydrophilic networks of nano- and macropores are formed in different MPLs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China. Electronic address:
Encapsulating enzymes in metal-organic frameworks (MOFs) enhances enzyme protection and improves the accuracy of inhibitor recognition and screening. Zeolitic imidazolate framework-8 (ZIF-8) has been widely used as a host matrix for enzyme immobilization. However, challenges such as the microporous structure and hydrophobicity of ZIF-8, along with the protonation of 2-methylimidazole, hinder the maintenance of activity and the rapid formation of composite.
View Article and Find Full Text PDFACS Omega
January 2025
School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Hot dry rock (HDR) geothermal development faces challenges due to the difficulty of stimulating fluid flow and heat-exchange fracture channels within deep, low-porosity, and low-permeability reservoirs. A liquid nitrogen cyclic cold shock method was proposed, using liquid nitrogen as a fracturing fluid. The large temperature difference between the liquid nitrogen and the hot rock induces thermal stress, forming a complex pore-fracture network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!