Structurally well-defined graphene nanoribbons (GNRs) have attracted great interest as next-generation semiconductor materials. The functionalization of GNRs with polymeric side chains, which can widely broaden GNR-related studies on physiochemical properties and potential applications, has remained unexplored. Here, we demonstrate the bottom-up solution synthesis of defect-free GNRs grafted with flexible poly(ethylene oxide) (PEO) chains. The GNR backbones possess an armchair edge structure with a width of 1.0-1.7 nm and mean lengths of 15-60 nm, enabling near-infrared absorption and a low bandgap of 1.3 eV. Remarkably, the PEO grafting renders the GNRs superb dispersibility in common organic solvents, with a record concentration of ∼1 mg mL(-1) (for GNR backbone) that is much higher than that (<0.01 mg mL(-1)) of reported GNRs. Moreover, the PEO-functionalized GNRs can be readily dispersed in water, accompanying with supramolecular helical nanowire formation. Scanning probe microscopy reveals raft-like self-assembled monolayers of uniform GNRs on graphite substrates. Thin-film-based field-effect transistors (FETs) of the GNRs exhibit a high carrier mobility of ∼0.3 cm(2) V(-1) s(-1), manifesting promising application of the polymer-functionalized GNRs in electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b07061DOI Listing

Publication Analysis

Top Keywords

polyethylene oxide
8
graphene nanoribbons
8
oxide functionalized
4
functionalized graphene
4
nanoribbons excellent
4
excellent solution
4
solution processability
4
processability structurally
4
structurally well-defined
4
well-defined graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!