Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years reversible logic has come as a promising solution in the optical computing domain. In reversible gates, there is one-to-one mapping between input and output, causing no loss of information. Reversible gates are useful for application in low power complementary metal-oxide semiconductors, with less dissipation, and in quantum computing. These benefits can be utilized by implementing reversible gate structures in the optical domain. In this paper, basic reversible Feynman and Fredkin logic gates using a lithium niobate based Mach-Zehnder interferometer are proposed. The different applications utilizing the proposed structures are also explained in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.55.005693 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!