A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Incoherent wavefront reconstruction by a retroemission device containing a thin fluorescent film: theory. | LitMetric

A retroemission device (REM) is an incoherent holographic device that represents a lenslet array situated on a substrate containing fluorescent material. Each lenslet focuses each wavelet of an optical wavefront incident on the REM device into a diffraction-limited volume (voxel) in the fluorescent material, so that the voxel coordinates encode the angle of incidence and curvature of the wavelet. The back-propagating fraction of the excited fluorescence is collected by the lenslet and quasi-collimated into a back-propagating wavelet. All wavelets are combined to reconstruct the incident wavefront propagating in the backward direction. We present a theoretical model of REM based on Fresnel-Kirchhoff approximation describing the reconstructed 3D image characteristics versus the thickness of the fluorescence film at the focal plane of the lenslets. Results of the computer simulations of the REM-based images of a point source, two axially separated point sources and an extended object (a circular rim) situated in the sagittal plane are presented. These results speak in favor of using a fluorescence film of minimum diffraction-limited thickness at the lenslet back focal plane. This REM structure minimizes the fluorescence background and improves the 3D imaging resolution in virtue of the exclusion of out-of-voxel fluorescence contributions to the reconstructed wavefront.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.55.005554DOI Listing

Publication Analysis

Top Keywords

retroemission device
8
fluorescent material
8
fluorescence film
8
focal plane
8
fluorescence
5
incoherent wavefront
4
wavefront reconstruction
4
reconstruction retroemission
4
device
4
device thin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!