RGS2 is a negative regulator of G protein signaling that contains a GTPase-activating domain and a β-tubulin binding region. This study aimed to determine the localization and function of RGS2 during mouse oocyte maturation in vitro. Immunofluorescent staining revealed that RGS2 was widely expressed in the cytoplasm with a greater abundance on both meiotic spindles and first/second polar bodies from the fully-grown germinal vesicle (GV) stage to the MII stages. Co-expression of RGS2 and β-tubulin could also be detected in the spindle and polar body of mouse oocytes at the MI, AI, and MII stages. Inhibition of the binding site between RGS2 and β-tubulin was accomplished by injecting anti-RGS2 antibody into GV-stage oocytes, which could result in oocytes arrest at the MI or AI stage during in vitro maturation, but it did not affect germinal vesicle breakdown. Moreover, injecting anti-RGS2 antibody into oocytes resulted in a significant reduction in the rate of first polar body extrusion and abnormal spindle formation. Additionally, levels of phosphorylated MEK1/2 were significantly reduced in anti-RGS2 antibody injected oocytes compared with control oocytes. These findings suggest that RGS2 might play a critical role in mouse oocyte meiotic maturation by affecting β-tubulin polymerization and chromosome segregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963123PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159535PLOS

Publication Analysis

Top Keywords

rgs2 β-tubulin
12
mouse oocyte
12
anti-rgs2 antibody
12
inhibition binding
8
spindle formation
8
chromosome segregation
8
oocyte maturation
8
maturation vitro
8
germinal vesicle
8
mii stages
8

Similar Publications

Sympathoexcitation is a hallmark of heart failure, with sustained β-adrenergic receptor (βAR)-G protein signaling activation. βAR signaling is modulated by regulator of G protein signaling (RGS) proteins. Previously, we reported that Gα regulation by RGS2 or RGS5 is key to ventricular rhythm regulation, while the dual loss of both RGS proteins results in left ventricular (LV) dilatation and dysfunction.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an RNA-binding protein ORF57 in lytic infection. Using an optimized CLIP-seq in this report, we identified ORF57-bound transcripts from 544 host protein-coding genes. By comparing with the RNA-seq profiles from BCBL-1 cells with latent and lytic KSHV infection and from HEK293T cells with and without ORF57 expression, we identified FOS RNA as one of the major ORF57-specific RNA targets.

View Article and Find Full Text PDF

Gpn2 is a highly conserved protein essential for the assembly of RNA polymerase II (RNAPII) in eukaryotic cells. Mutations in Gpn2, specifically Phe105Tyr and Leu164Pro, confer temperature sensitivity and significantly impair RNAPII assembly. Despite its crucial role, the complete range of Gpn2 functions remains to be elucidated.

View Article and Find Full Text PDF

The C/C Genotype of rs1231760 in Is a Risk Factor for the Progression of -Positive Atrophic Gastritis by Increasing Expression.

Diagnostics (Basel)

November 2024

Department of Pharmacotherapeutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.

Background: Chronic gastritis caused by () infection can progress to gastric cancer through atrophic gastritis (AG). The risk of gastric cancer increases with the progression of AG. Therefore, investigating the risk factors for the progression of AG is important.

View Article and Find Full Text PDF

ZFP36 Regulates Vascular Smooth Muscle Contraction and Maintains Blood Pressure.

Adv Sci (Weinh)

November 2024

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.

Hypertension remains a major risk factor for cardiovascular diseases, but the underlying mechanisms are not well understood. Zinc finger protein 36 (ZFP36) is an RNA-binding protein that regulates mRNA stability by binding to adenylate-uridylate-rich elements in the mRNA 3'-untranslated region. This study reveals that ZFP36 expression is highly elevated in the arteries of hypertensive patients and rodents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!