Accurate design of megadalton-scale two-component icosahedral protein complexes.

Science

Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.

Published: July 2016

Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization of co-assembling, two-component, 120-subunit icosahedral protein nanostructures with molecular weights (1.8 to 2.8 megadaltons) and dimensions (24 to 40 nanometers in diameter) comparable to those of small viral capsids. Electron microscopy, small-angle x-ray scattering, and x-ray crystallography show that 10 designs spanning three distinct icosahedral architectures form materials closely matching the design models. In vitro assembly of icosahedral complexes from independently purified components occurs rapidly, at rates comparable to those of viral capsids, and enables controlled packaging of molecular cargo through charge complementarity. The ability to design megadalton-scale materials with atomic-level accuracy and controllable assembly opens the door to a new generation of genetically programmable protein-based molecular machines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485857PMC
http://dx.doi.org/10.1126/science.aaf8818DOI Listing

Publication Analysis

Top Keywords

icosahedral protein
12
design megadalton-scale
8
protein-based molecular
8
molecular machines
8
viral capsids
8
icosahedral
6
accurate design
4
megadalton-scale two-component
4
two-component icosahedral
4
protein complexes
4

Similar Publications

Tailed bacteriophages with double-stranded DNA genomes (class ) play an important role in the evolution of bacterial pathogenicity, both as carriers of genes encoding virulence factors and as the main means of horizontal transfer of mobile genetic elements (MGEs) in many bacteria, such as . The pathogenicity islands (SaPIs), including SaPI1, are a type of MGEs are that carry a variable complement of genes encoding virulence factors. SaPI1 is mobilized at high frequency by "helper" bacteriophages, such as 80α, leading to packaging of the SaPI1 genome into virions made from structural proteins supplied by the helper.

View Article and Find Full Text PDF

Identification of a novel mycovirus belonging to the "flexivirus"-related family with icosahedral virion.

Virus Evol

November 2024

Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.

The order currently comprises five viral families with positive-sense RNA [(+)RNA] genomes that infect plants, fungi, and insects. Virion morphologies within the order differ between families, with icosahedral virions in the and filamentous virions in the other families. Despite their different morphologies, these viruses are placed in the same order based on phylogenetic analyses of replicase-associated polyproteins.

View Article and Find Full Text PDF

Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry. Here, inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials.

View Article and Find Full Text PDF

Four, eight or twenty C3 symmetric protein trimers can be arranged with tetrahedral, octahedral or icosahedral point group symmetry to generate closed cage-like structures. Viruses access more complex higher triangulation number icosahedral architectures by breaking perfect point group symmetry, but nature appears not to have explored similar symmetry breaking for tetrahedral or octahedral symmetries. Here we describe a general design strategy for building higher triangulation number architectures starting from regular polyhedra through pseudosymmetrization of trimeric building blocks.

View Article and Find Full Text PDF

Multi-enzyme assemblies both in the cell membrane and cytoplasm boost intracellular lycopene production.

Int J Biol Macromol

December 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. Electronic address:

The multi-enzyme assembly system demonstrates remarkable potential in enhancing both intracellular and extracellular enzyme catalysis. In this study, we employed a novel icosahedral protein cage, Mi3, as a protein scaffold and combined it with an ester bond-based peptide tagging system, ReverseTag/ReverseCatcher, to improve the enzymatic catalytic efficiency both in vitro and in vivo. In vitro, we fused ReverseTag to the N-terminal of exo-inulinase (EXINU) from Pseudomonas mucidolens, yielding ReverseTag-EXINU, which effectively bound to the surface of the ReverseCatcher-Mi3 protein cage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!