Enhanced depth imaging optical coherence tomography of choroidal osteoma with secondary neovascular membranes: report of two cases.

Arq Bras Oftalmol

Setor de Retina e Vítreo do Instituto Brasileiro de Oftalmologia (IBOL), Rio de Janeiro, RJ, Brazil.

Published: April 2017

We report enhanced depth imaging optical coherence tomography (EDI-OCT) features based on clinical and imaging data from two newly diagnosed cases of choroidal osteoma presenting with recent visual loss secondary to choroidal neovascular membranes. The features described in the two cases, compression of the choriocapillaris and disorganization of the medium and large vessel layers, are consistent with those of previous reports. We noticed a sponge-like pattern previously reported, but it was subtle. Both lesions had multiple intralesional layers and a typical intrinsic transparency with visibility of the sclerochoroidal junction.

Download full-text PDF

Source
http://dx.doi.org/10.5935/0004-2749.20160057DOI Listing

Publication Analysis

Top Keywords

enhanced depth
8
depth imaging
8
imaging optical
8
optical coherence
8
coherence tomography
8
choroidal osteoma
8
neovascular membranes
8
tomography choroidal
4
osteoma secondary
4
secondary neovascular
4

Similar Publications

Somatostatin-expressing neurons in the medial prefrontal cortex promote sevoflurane anesthesia in mice.

Anesthesiology

January 2025

Key Laboratory of Brain Science, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, 563100, Guizhou Province, China.

Background: The medial prefrontal cortex plays a crucial role in regulating consciousness. However, the specific functions of its excitatory and inhibitory networks during anesthesia remain uncertain. Here we explored the hypothesis that somatostatin interneurons in the medial prefrontal cortex enhance the effects of sevoflurane anesthesia by increasing GABA transmission to pyramidal neurons.

View Article and Find Full Text PDF

As people's material living standards continue to improve, the types and quantities of household garbage they generate rapidly increase. Therefore, it is urgent to develop a reasonable and effective method for garbage classification. This is important for resource recycling and environmental improvement and contributes to the sustainable development of production and the economy.

View Article and Find Full Text PDF

Pressure-Induced Emission Enhancement of Multi-Resonance o-Carborane Derivatives via Exciton‒Vibration Coupling Suppression.

Adv Sci (Weinh)

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No.688, Jinhua, 321004, P. R. China.

Polycyclic multiple resonance (MR) molecules reveal narrowband emission, making them very promising emitters for high color purity display. Nevertheless, they still have challenges such as aggregation-induced emission quenching and spectral broadening. Overcoming these obstacles requires an in-depth understanding of the correlations among the alterations in their geometries, packing structures, and molecular vibrations and their corresponding changes in their photoluminescence (PL) properties.

View Article and Find Full Text PDF

Background: In a previous study, we found that Atractylodes macrocephala and Paeoniae radix (AM-PR) was useful for the alleviation of functional constipation (FC). However, the precise mechanism underlying the compatibility between AM and PR in the treatment of FC remains uncertain. This study aims to analyze the pharmacokinetic differences in the active ingredients in the blood of rat models with FC when applied individually and in combination with AM-PR.

View Article and Find Full Text PDF

Background: Access-related vascular complications (VCs) after percutaneous transfemoral transcatheter aortic valve replacement (TAVR) are associated with poor clinical outcomes and remain a significant challenge despite technological advances. The aim of this study was to identify anatomic predictors of access-related VCs after TAVR on preprocedural contrast-enhanced multidetector computed tomography (MDCT).

Aims: The aim of this study was to identify anatomical predictors of access-related VCs after TAVR on preprocedural contrast-enhanced MDCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!