Glycoproteins form an interesting class of macromolecules involved in bacterial-host interactions, but they are not yet widely explored in Gram-positive and beneficial species. Here, an integrated and widely applicable approach was followed to identify putative bacterial glycoproteins, combining proteome fractionation with 2D protein and glycostained gels and lectin blots. This approach was validated for the microbiota isolate Lactobacillus rhamnosus GG. The approach resulted in a list of putative glycosylated proteins receiving a 'glycosylation score'. Ultimately, we could identify 41 unique glycosylated proteins in L. rhamnosus GG (6 top-confidence, 10 high-confidence and 25 putative hits; classification based on glycosylation score). Most glycoproteins are associated with the cell wall and membrane. Identified glycoproteins include proteins involved in transport, translation, and sugar metabolism processes. A robust screening resulted in a comprehensive mapping of glycoproteins in L. rhamnosus GG. Our results reflect the glycosylation of sugar metabolism enzymes, transporters, and other proteins crucial for cell physiology. We hypothesize that protein glycosylation can confer an extra level of regulation, for example by affecting enzyme functions. This is the first systematic study of the glycoproteome of a probiotic and beneficial gut isolate.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000447091DOI Listing

Publication Analysis

Top Keywords

beneficial gut
8
gut isolate
8
isolate lactobacillus
8
lactobacillus rhamnosus
8
glycosylated proteins
8
sugar metabolism
8
glycoproteins
5
systematic exploration
4
exploration glycoproteome
4
glycoproteome beneficial
4

Similar Publications

Background: The Kasai portoenterostomy (KPE) aims to re-establish bile flow in biliary atresia (BA); however, BA remains the commonest indication for liver transplantation in pediatrics. Gut microbiota-host interplay is increasingly associated with outcomes in chronic liver disease. This study characterized fecal microbiota and fatty acid metabolites in BA.

View Article and Find Full Text PDF

Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.

View Article and Find Full Text PDF

Evidence suggests that a healthy gut microbiome is essential for metabolizing dietary phytochemicals. However, the microbiome's role in metabolite production and the influence of gut dysbiosis on this process remain unclear. Further, studies on the relationship among gut microbes, metabolites, and biological activities of phytochemicals are limited.

View Article and Find Full Text PDF

Background And Aims: Vedolizumab is s gut-selective advanced therapy that is safe and efficacious for the treatment of ulcerative colitis (UC). Once patients achieve successful induction, there is a risk of loss of response leading to eventual flare. We aimed to identify these predictive factors and develop a practical scoring system to determine the ongoing efficacy of vedolizumab.

View Article and Find Full Text PDF

Objective: The objective of this study is to investigate the ability of Ramulus Mori (Sangzhi) alkaloid tablets (SZ-A) to ameliorate obesity and lipid metabolism disorders in rats subjected to a high-fat diet (HFD) through metagenomics, untargeted lipidomics, targeted metabolism of bile acid (BA), and BA pathways, providing a novel perspective on the management of metabolic disorders.

Methods: In this research, HFD-fed rats were concurrently administered SZ-A orally. We measured changes in body weight (BW), blood lipid profiles, and liver function to assess therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!