In this paper, we associate an applicability domain (AD) of QSAR/QSPR models with the area in the input (descriptor) space in which the density of training data points exceeds a certain threshold. It could be proved that the predictive performance of the models (built on the training set) is larger for the test compounds inside the high density area, than for those outside this area. Instead of searching a decision surface separating high and low density areas in the input space, the one-class classification 1-SVM approach looks for a hyperplane in the associated feature space. Unlike other reported in the literature AD definitions, this approach: (i) is purely "data-based", i.e. it assigns the same AD to all models built on the same training set, (ii) provides results that depend only on the initial descriptors pool generated for the training set, (iii) can be used for the huge number of descriptors, as well as in the framework of structured kernel-based approaches, e.g., chemical graph kernels. The developed approach has been applied to improve the performance of QSPR models for stability constants of the complexes of organic ligands with alkaline-earth metals in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/minf.201000063 | DOI Listing |
Am J Gastroenterol
January 2025
Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, China.
Objectives: Hypertriglyceridemia-associated acute pancreatitis (HTG-AP) is one of the most common etiologies of acute pancreatitis (AP) worldwide. Compared to other etiologies, patients with HTG-AP may develop more severe AP, but previous studies yielded controversial conclusion due to the lack of adequate adjustment for the confounders. Therefore, this study aimed to examine the possibility and risk factors of developing severe AP in HTG-AP.
View Article and Find Full Text PDFJ Vasc Access
January 2025
College of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Objective: To develop and validate a nomogram model for predicting central venous catheter-related infections (CRI) in patients with maintenance hemodialysis (MHD).
Methods: MHD patients with central venous catheters (CVCs) visiting the outpatient hemodialysis (HD) center of Xuzhou Medical University Affiliated Hospital from January 2020 to December 2023 were retrospectively selected through a HD monitoring system. Patient data were collected, and the patients were divided into training and validation sets in a 7:3 ratio.
IntroductionAsthma attacks are set off by triggers such as pollutants from the environment, respiratory viruses, physical activity and allergens. The aim of this research is to create a machine learning model using data from mobile health technology to predict and appropriately warn a patient to avoid such triggers.MethodsLightweight machine learning models, XGBoost, Random Forest, and LightGBM were trained and tested on cleaned asthma data with a 70-30 train-test split.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, Comprehensive Epilepsy Center, Johns Hopkins University, Baltimore, MD, USA.
Objective: Whereas a scalp electroencephalogram (EEG) is important for diagnosing epilepsy, a single routine EEG is limited in its diagnostic value. Only a small percentage of routine EEGs show interictal epileptiform discharges (IEDs) and overall misdiagnosis rates of epilepsy are 20% to 30%. We aim to demonstrate how network properties in EEG recordings can be used to improve the speed and accuracy differentiating epilepsy from mimics, such as functional seizures - even in the absence of IEDs.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
January 2025
Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).
Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!