White matter injury following ischemic stroke is a major cause of functional disability. Injury to both myelinated axons and oligodendrocytes, the myelin producing cells in the central nervous system, occurs in experimental models of ischemic stroke. Age-related changes in white matter vulnerability to ischemia have been extensively studied and suggest that both the perinatal and the aged periods are times of increased white matter vulnerability. However, sensitivity of white matter following stroke in the juvenile brain has not been evaluated. Interestingly, the late pediatric period is an important developmental stage, as it is the time of maximal myelination. The current study demonstrates that neurons in late pediatric/juvenile striatum are vulnerable to ischemic damage, with neuronal injury being comparable in juvenile and adult mice following ischemia. By contrast, actively myelinating striatal oligodendrocytes in the juvenile brain are resistant to ischemia, whereas adult oligodendrocytes are quite sensitive. As a result, myelin sheaths are remarkably intact and axons survive well in the injured striatum of juvenile mice. In addition to relative resistance of juvenile white matter, other glial responses were very different in juvenile and adult mice following cerebral ischemia, including differences in astrogliosis, fibrosis, NG2-cell reactivity, and vascular integrity. Together, these responses lead to long-term preservation of brain parenchyma in juvenile mice, compared to severe tissue loss and scarring in adult mice. Overall, the current study suggests that equivalent ischemic insults may result in less functional deficit in children compared to adults and an environment more conducive to long-term recovery. GLIA 2016;64:1972-1986.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886370 | PMC |
http://dx.doi.org/10.1002/glia.23036 | DOI Listing |
Glia
January 2025
Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA.
Cellular stressors inhibit general protein synthesis while upregulating stress response transcripts and/or proteins. Phosphorylation of the translation factor eIF2α by one of the several stress-activated kinases is a trigger for such signaling, known as the integrated stress response (ISR). The ISR regulates cell survival and function under stress.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Department of Neurology, Henan Province People's Hospital, Xinxiang Medical University, Zhengzhou, China.
Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common inherited cerebral small vessel diseases caused by the NOTCH3 gene mutation. This mutation leads to the accumulation of NOTCH3 extracellular domain protein (NOTCH3) into the cerebral arterioles, causing recurrent stroke, white matter lesions, and cognitive impairment. With the development of gene sequencing technology, cysteine-sparing mutations can also cause CADASIL disease, however, the pathogenicity and pathogenic mechanisms of cysteine-sparing mutations remain controversial.
View Article and Find Full Text PDFFront Neurosci
December 2024
Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, Sherbrooke, QC, Canada.
Traditional Diffusion Tensor Imaging (DTI) metrics are affected by crossing fibers and lesions. Most of the previous tractometry works use the single diffusion tensor, which leads to limited sensitivity and challenging interpretation of the results in crossing fiber regions. In this work, we propose a tractometry pipeline that combines white matter tractography with multi-tensor fixel-based metrics.
View Article and Find Full Text PDFFront Neurosci
December 2024
Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
Objective: High Angular Resolution Diffusion Imaging (HARDI) models have emerged as a valuable tool for investigating microstructure with a higher degree of detail than standard diffusion Magnetic Resonance Imaging (dMRI). In this study, we explored the potential of multiple advanced microstructural diffusion models for investigating preterm birth in order to identify non-invasive markers of altered white matter development.
Approach: Rather than focusing on a single MRI modality, we studied on a compound of HARDI techniques in 46 preterm babies studied on a 3T scanner at term-equivalent age and in 23 control neonates born at term.
Front Neurol
December 2024
Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria.
Background: There is evidence that iron metabolism may play a role in the underlying pathophysiological mechanism of migraine. Studies using (=1/ ) relaxometry, a common MRI-based iron mapping technique, have reported increased values in various brain structures of migraineurs, indicating iron accumulation compared to healthy controls.
Purpose: To investigate whether there are short-term changes in during a migraine attack.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!