It remains a paradox that IL-2 and IL-15 can differentially modulate the immune response using the same signaling receptors. We have previously dissected the phosphotyrosine-driven signaling cascades triggered by both cytokines in Kit225 T-cells, unveiling subtle differences that may contribute to their functional dichotomy. In this study, we aimed to decipher the receptor complex assembly in IL-2- and IL-15-activated T-lymphocytes that is highly orchestrated by site-specific phosphorylation events. Comparing the cytokine-induced interactome of the interleukin receptor beta and gamma subunits shared by the two cytokines, we defined the components of the early IL-2 and IL-15 receptor-associated complex discovering novel constituents. Additionally, phosphopeptide-directed analysis allowed us to detect several cytokine-dependent and -independent phosphorylation events within the activated receptor complex including novel phosphorylated sites located in the cytoplasmic region of IL-2 receptor β subunit (IL-2Rβ). We proved that the distinct phosphorylations induced by the cytokines serve for recruiting different types of effectors to the initial receptor/ligand complex. Overall, our study sheds new light into the initial molecular events triggered by IL-2 and IL-15 and constitutes a further step toward a better understanding of the early signaling aspects of the two closely related cytokines in T-lymphocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.6b00233DOI Listing

Publication Analysis

Top Keywords

il-2 il-15
12
complex assembly
8
il-2- il-15-activated
8
receptor complex
8
phosphorylation events
8
complex
5
characterization receptor-associated
4
receptor-associated protein
4
protein complex
4
assembly interleukin
4

Similar Publications

Modeling the response to interleukin-21 to inform natural killer cell immunotherapy.

Immunol Cell Biol

January 2025

Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.

Natural killer (NK) cells are emerging agents for cancer therapy. Several different cytokines are used to generate NK cells for adoptive immunotherapy including interleukin (IL)-2, IL-12, IL-15 and IL-18 in solution, and membrane-bound IL-21. These cytokines drive NK cell activation through the integration of signal transducers and activators of transcription (STAT) and nuclear factor-kappa B (NF-κB) pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations for both proliferation and cytotoxicity.

View Article and Find Full Text PDF

Tregs for adoptive therapy are traditionally expanded ex vivo using high doses of IL-2. However, the final Treg product has limited survival once infused in patients, potentially affecting therapeutic effectiveness. Here, we tested a novel expansion protocol in which highly purified naïve Tregs were expanded with a combination of IL-7 and IL-15, in the absence of IL-2.

View Article and Find Full Text PDF

Effectiveness and cytokine profile of combined anti-vascular endothelial growth factor and corticosteroid therapy for chronic retinal vein occlusion.

Graefes Arch Clin Exp Ophthalmol

January 2025

Department of Ophthalmology and Micro-Technology, Yokohama City University, 4-57 Urafunecho, Minami-ku, Yokohama, 232-0024, Kanagawa, Japan.

Purpose: To investigate whether sub-Tenon injection of triamcinolone acetonide (STTA) combined with anti-vascular endothelial growth factor (VEGF) prolongs the recurrence intervals of macular edema (ME) for chronic retinal vein occlusion (RVO) and to investigate the differences in intraocular inflammatory cytokines between good responders (GRs) and non-responders (NRs).

Methods: This retrospective, observational study involved 42 eyes of 42 patients with ME due to chronic RVO who had received only anti-VEGF for ≥ 1 year and were transitioned to combination therapy. GRs were defined as patients whose recurrence intervals were prolonged by ≥ 2 weeks compared with patients receiving anti-VEGF alone.

View Article and Find Full Text PDF

Retrovirus-based manufacturing of chimeric antigen receptor-modified T cells for cancer therapy research.

Methods Cell Biol

January 2025

Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany. Electronic address:

Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population.

View Article and Find Full Text PDF

Utilizing T-Lymphocyte Activation-Related Cytokines to Predict Non-Responsiveness to Treatment in Pediatric Kawasaki Disease.

Pediatric Health Med Ther

December 2024

Department of Pediatric Intensive Care Unit, Hangzhou Children's Hospital, Hangzhou, Zhejiang, People's Republic of China.

Objective: To investigate the predictive value of T-lymphocyte activation-related cytokines in non-responsive Kawasaki disease.

Methods: Eighty-two children with Kawasaki disease, hospitalized from June 2022 to December 2023, were divided into two groups based on treatment response: the sensitive Kawasaki disease group (n=71) and the non-responsive Kawasaki disease group (n=11). Serum levels of T-lymph activation-related cytokines, including interleukin-2, 6, 7, 12, 15, 17, and tumor necrosis factor alpha, were measured before and after IVIG treatment in both groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!