Objective: To validate the ethno-therapeutic claim of the traditionally used plant Jasminum auriculatum (J. auriculatum) in skin diseases, by evaluating its wound healing potential along with its antioxidant and antimicrobial properties; so as to understand their role in wound healing.
Materials And Methods: Excision and incision wound models were used to evaluate the wound healing activity on albino rats. The wound healing potential was assessed by measuring rate of wound contraction, epithelialization period, hydroxyproline content, skin breaking strength and histopathological parameters. Reference standard drug was Nitrofurazone ointment. The antioxidant activity was determined using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method. The antimicrobial activity was determined by agar well diffusion method and minimum inhibitory concentration by serial dilution method.
Results: Higher rate of wound contraction (83.66±0.50% on 15th day), decrease in the period of epithelialization (17.83±1.6days), higher skin breaking strength (170.71±1.52g), higher collagen content and favourable histopathological changes revealed that topical application of ointment containing successive ethanolic extract (S.E.E) of J. auriculatum leaves has the most potent wound healing ability compared to control group in both the models studied. The DPPH radical scavenging activity of successive ethanolic extract was found to be 33.39µg/ml. Successive ethanolic extract was found to be most effective against Pseudomonas auregenosa having a zone of inhibition 16.65±0.6mm and the minimum inhibitory concentration was 0.78mg/ml.
Conclusion: The data of this study indicate that successive ethanolic extract of the leaves exhibit potent wound healing, antioxidant and antimicrobial properties. This justifies the ethno-medicinal use of plant for the treatment of wound and microbial infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930536 | PMC |
Lasers Med Sci
January 2025
Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.
Skin flap transplantation is a conventional wound repair method in plastic and reconstructive surgery, but infection and ischemia are common complications. Photobiomodulation (PBM) therapy has shown promise for various medical problems, including wound repair processes, due to its capability to accelerate angiogenesis and relieve inflammation. This study investigated the effect of red and blue light on the survival of random skin flaps in methicillin-resistant Staphylococcus aureus (MRSA)-infected Sprague Dawley (SD) rats.
View Article and Find Full Text PDFDiscov Nano
January 2025
Department of Biotechnology, Alagappa University, Karaikudi, 630003, India.
Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Faculty of Dentistry, Ain Shams University, Organization of African Unity Street, Cairo, Egypt, 11766.
As photobiomodulation is growing in the dental field the aim of this prospective, two-arm clinical trial was to assess the radiographic changes for chronic periapical bone lesions related to mandibular molars after primary root canal therapy with or without applying Diode laser on soft tissue. The samples were randomly divided into a Laser group and a mock laser (ML) group. Preoperative CBCT images were compared 12 months later with postoperative CBCT to gauge the changes in the volume of the bony lesion by two observers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiaotong University, 800 Dongchuan Road, Minhang District, Shanghai, CHINA.
Diabetes significantly increases the risk of serious health issues, including prolonged skin inflammation and delayed wound healing, owing to inferior glucose control and suppression of the immune system. Although traditional hydrogen (H2) therapy is slightly effective, its ability to tailor the release of H2 on the skin is limited. Accordingly, this study proposed a novel strategy for electrocatalytic H2 release under neutral conditions to promote wound healing in diabetic mice and rabbit.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!