We report an unsurpassed solution characterization technique based on analytical ultracentrifugation, which demonstrates exceptional potential for resolving particle sizes in solution with sub-nm resolution. We achieve this improvement in resolution by simultaneously measuring UV/Vis spectra while hydrodynamically separating individual components in the mixture. By equipping an analytical ultracentrifuge with a novel multi-wavelength detector, we are adding a new spectral discovery dimension to traditional hydrodynamic characterization, and amplify the information obtained by orders of magnitude. We demonstrate the power of this technique by characterizing unpurified CdTe nanoparticle samples, avoiding tedious and often impossible purification and fractionation of nanoparticles into apparently monodisperse fractions. With this approach, we have for the first time identified the pure spectral properties and band-gap positions of discrete species present in the CdTe mixture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148131 | PMC |
http://dx.doi.org/10.1002/anie.201603844 | DOI Listing |
ACS Sens
December 2024
School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China.
Background noise interferes with the accurate detection of early tumor biomarkers. This study introduces a method that effectively reduces background noise to enhance detection accuracy by combining a color-coded signaling approach with the unique fluorescent properties and room-temperature tunable quantum spin characteristics of fluorescent diamonds (FNDs) with nitrogen-vacancy centers. In this approach, a red signal indicates the presence of the target analyte within the spectral region, a green signal indicates its absence, and a yellow signal indicates the need for further analysis using FNDs' quantum spin properties for optical detection magnetic resonance (ODMR) to distinguish the FND signal from background noise.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Chinese Academy of Sciences, Institute of Chemistry, 2 Bei Yi Jie, Zhong Guan Cun, 100190, Beijing, CHINA.
Molecular frameworks have recently shown a great potential in atmospheric water harvesting, in which the water release at low temperatures is challenging. Anion-organic frameworks based on anion-coordination chemistry are presented herein to meet this challenge. These frameworks are prepared as tubular single crystals in pure water from the in-situ protonation and crystallization of pyridine-terminated triphenylamine derivatives with hydrochloric or hydrobromic acid.
View Article and Find Full Text PDFACS Nanosci Au
December 2024
Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
The dynamic control of chiral (enantiomeric) responses in chiral host-guest complexes through external stimuli is a significant challenge in modern chemistry for developing smart stimuli-responsive materials. Herein, we report the (chir)optical properties and chiral recognition behavior of water-soluble chiral naphthotubes () under the influence of hydrostatic pressure as an external stimulus. The hydrostatic pressure spectral profiles compared to those obtained at normal pressure revealed the dynamic behavior of under hydrostatic pressure, owing to the flexible linker.
View Article and Find Full Text PDFCerebral glucose metabolism (CMRGlc) systematically decreases with advancing age. We sought to identify correlates of decreased CMRGlc in the spectral properties of fMRI signals imaged in the task-free state. We analyzed lifespan resting-state fMRI data acquired in 455 healthy adults (ages 18-87 years) and cerebral metabolic data acquired in a separate cohort of 94 healthy adults (ages 25-45 years, 65-85 years).
View Article and Find Full Text PDFRSC Adv
December 2024
Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
This study presents the synthesis and characterization of novel cocrystal structures of theophylline (THE) with the amino acids gamma-aminobutyric acid (GABA) and l-arginine (ARG). Despite a large number of reports about THE cocrystals, no crystallographic parameters of cocrystals formed by THE and amino acids have been reported. THE is characterized by low solubility, while amino acids as cocrystal co-formers (CCFs) are increasingly recognized for their high solubility and safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!