Background: Plant extract therapy has been the cornerstone of cancer treatment for many years. The natural component curcumin demonstrated antineoplastic effects on different type of tumor cells. In this study, we explored the effectiveness of curcumin against low-passage human primary glioblastoma (GB) cell cultures.
Materials And Methods: Early passage GB cell cultures (GB3B, GB4B, and GB5B) were established from fresh samples tissue obtained from GB patients. Growth rate (GR) and doubling time (DT) was determined for each cell line. The cytotoxic effect of curcumin was quantified by hemocytometer cell counting, using trypan blue. To study the changes in cell shape, GB cells exposed to a concentration corresponding to inhibitory concentration 50 (IC50) of curcumin were studied by phase-contrast microscopy by capturing images during the treatment.
Results: Our results showed that GB cells proliferate with a GR of 0.2872 and a DT of 2.41 days for GB3B, a GR of 0.2787 and a DT of 2.49 days for GB4B, and a GR of 0.2787 and a DT of 2.49 days for GB5B. Curcumin induced cell death in GB cells in a time- and dose-dependent manner. The IC50 for GB3B was 46.4 µM, for GB4B was 78,3 µM, and for GB5B was 47.7 µM. Phase contrast microscopy showed that cultures treated with curcumin in a concentration corresponding to IC50 contained rounded cells and cell fragments, 72 h after the treatment.
Conclusions: The results of the present investigation proved that curcumin is a natural compound potentially useful in the fight against GB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/0973-1482.167609 | DOI Listing |
Assay Drug Dev Technol
January 2025
Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education & Research - Autonomous, Anantapur, Andhra Pradesh, India.
Langmuir
January 2025
Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, GR-65404 Kavala, Greece.
The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
Background: Regenerating periodontal ligament (PDL) tissue is a vital challenge in dentistry that aims to restore periodontal function and aesthetics. This study explores a tissue engineering strategy that combines polycaprolactone (PCL)/collagen/cellulose acetate electrospun scaffolds with collagen hydrogels to deliver curcumin-loaded ZIF-8 nanoparticles fand periodontal ligament stem cells (PDLSCs).
Methods: Scaffolds were fabricated via electrospinningand collagen hydrogels incorporated PDLSCs and curcumin-loaded ZIF-8 nanoparticles (CURZIF-8) were developed using cross-linking.
Curr Med Chem
January 2025
School of Pharmacy, Changzhou University, Changzhou, 213164, China.
Curcumin is a natural plant pigment that has been widely used in food production, drug development, and textile engineering. Gaining a deep understanding of the biological activities of curcumin and obtaining high-purity curcumin are of vital importance for basic research and applications of curcumin. In this review, we summarize recent advances in curcumin, mainly focusing on the methods of extracting and purifying curcumin from turmeric as well as applications based on biological activity.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China.
The supercritical antisolvent (SAS) method can effectively improve the bioavailability of poorly water-soluble drugs. However, the current supercritical equipment and processes were not fully developed, making industrialization difficult to achieve. Therefore, an externally adjustable annular gap nozzle and its supporting equipment were designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!