Aims: Sirtuins connect energy generation and metabolic stress to the cellular acetylome. Currently, only the mitochondrial sirtuins (SIRT3-5) and SIRT1 have been shown to direct mitochondrial function; however, Aims: NAD-dependent protein deacetylase sirtuin-2 (SIRT2), the primary cytoplasmic sirtuin, is not yet reported to associate with mitochondria.
Results: This study revealed a novel physiological function of SIRT2: the regulation of mitochondrial function. First, the acetylation of several metabolic mitochondrial proteins was found to be altered in Sirt2-deficient mice, which was, subsequently, validated by immunoprecipitation experiments in which the acetylated mitochondrial proteins directly interacted with SIRT2. Moreover, immuno-gold electron microscopic images of mouse brains showed that SIRT2 associates with the inner mitochondrial membrane in central nervous system cells. The loss of Sirt2 increased oxidative stress, decreased adenosine triphosphate levels, and altered mitochondrial morphology at the cellular and tissue (i.e., brain) level. Furthermore, the autophagic/mitophagic processes were dysregulated in Sirt2-deficient neurons and mouse embryonic fibroblasts.
Innovation: For the first time it is shown that SIRT2 directs mitochondrial metabolism.
Conclusion: Together, these findings support that SIRT2 functions as a mitochondrial sirtuin, as well as a regulator of autophagy/mitophagy to maintain mitochondrial biology, thus facilitating cell survival. Antioxid. Redox Signal. 26, 849-863.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444513 | PMC |
http://dx.doi.org/10.1089/ars.2016.6662 | DOI Listing |
Chemistry
December 2024
National Taiwan University Hospital, Immune Research Core, Department of Medical Research, TAIWAN.
The development of multifunctional therapeutic agents is crucial for addressing complex diseases such as Alzheimer's disease. Herein, we report a ruthenium-rhenium (Ru-Re) complex that combines photodynamic therapy (PDT) and carbon monoxide (CO) generation capabilities. The Ru-Re complex shows promising photophysical property and significant therapeutic potential.
View Article and Find Full Text PDFChempluschem
December 2024
Centre for Inorganic Chemistry, Chemistry, Bv 120, e/ 60 y 64, Nº1465, 1900, La Plata, ARGENTINA.
The redox imbalance, caused by depletion or generation of reactive oxygen species (ROS), is a key mechanism by which metal complexes exert anticancer effects. Carbidopa has shown the ability to inhibit the MDA-MB-231 cell line, a highly aggressive triple-negative human breast adenocarcinoma, by inducing reductive stress. The metal complex of carbidopa with zinc (ZnCarbi) was designed to modify carbidopa's structure and exhibited increased cytotoxicity against MDA-MB-231 cells.
View Article and Find Full Text PDFMol Cell Biochem
December 2024
Department XIII Infectious Diseases-Parasitology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania.
The global burden of cancer as a major cause of death and invalidity has been constantly increasing in the past decades. Monoamine oxidases (MAO) with two isoforms, MAO-A and MAO-B, are mammalian mitochondrial enzymes responsible for the oxidative deamination of neurotransmitters and amines in the central nervous system and peripheral tissues with the constant generation of hydrogen peroxide as the main deleterious ancillary product. However, given the complexity of cancer biology, MAO involvement in tumorigenesis is multifaceted with different tumors displaying either an increased or decreased MAO profile.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.
Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 21 Nanyang Link, 637371, Singapore, SINGAPORE.
Microglial phagocytosis is a highly energy-consuming process that plays critical roles in clearing neurotoxic amyloid-β (Aβ) in Alzheimer's disease (AD). However, microglial metabolism is defective overall in AD, thereby undermining microglial phagocytic functions. Herein, we repurpose the existing antineoplastic drug lonidamine (LND) conjugated with hollow mesoporous Prussian blue (HMPB) as a "microglial energy modulator" (termed LND@HMPB-T7) for safe and synergistic Aβ clearance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!