Food crop seedlings often have susceptibility to various abiotic and biotic stresses. Therefore, in the present study, we investigated the impact of Cu-chitosan nanoparticles (NPs) on physiological and biochemical changes during maize seedling growth. Higher values of percent germination, shoot and root length, root number, seedling length, fresh and dry weight, and seed vigor index were obtained at 0.04-0.12% concentrations of Cu-chitosan NPs as compared to water, CuSO4, and bulk chitosan treatments. Cu-chitosan NPs at the same concentrations induced the activities of α-amylase and protease enzymes and also increased the total protein content in germinating seeds. The increased activities of α-amylase and protease enzymes corroborated with decreased content of starch and protein, respectively, in the germinating seeds. Cu-chitosan NPs at 0.16% and CuSO4 at 0.01% concentrations showed inhibitory effect on seedling growth. The observed results on seedling growth could be explained by the toxicity of excess Cu and growth promotory effect of Cu-chitosan NPs. Physiological and biochemical studies suggest that Cu-chitosan NPs enhance the seedling growth of maize by mobilizing the reserved food, primarily starch, through the higher activity of α-amylase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.6b02239 | DOI Listing |
AMB Express
January 2025
Central Laboratory for Agricultural Climate, Agricultural Research Center, Dokki, Giza, Egypt.
Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.
View Article and Find Full Text PDFDrought is one of the main environmental factors affecting plant survival and growth. Atraphaxis bracteata is a common desert plant mainly utilized in afforestation and desertification control. This study analyzed the morphological, physiological and molecular regulatory characteristics of different organs of A.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China. Electronic address:
The plant UDP-glycosyltransferases (UGTs) regulate several metabolic processes during root growth and development by conjugating sugar moieties to various small molecules. RsUGT71B5 is a novel UDP-glycosyltransferase in Raphanus sativus L., but its biological function is not well established.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC).
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.
Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!