AI Article Synopsis

  • The long non-coding RNA TUG1 is found to be overexpressed in high-grade muscle-invasive bladder cancer (MIBC) tumor tissues compared to adjacent non-tumor tissues.
  • Increased levels of TUG1 are linked to metastatic tumors and are associated with shorter overall survival rates for MIBC patients.
  • In vitro experiments show that silencing TUG1 reduces cancer cell proliferation and migration, suggesting its potential as a biomarker or therapeutic target in MIBC.

Article Abstract

Long non-coding RNA TUG1 is involved in the development and progression of a variety of tumors. Little is known about TUG1 function in high-grade muscle-invasive bladder cancer (MIBC). The aims of our study were to determine expression levels of long non-coding RNA TUG1 in tumor tissue, to evaluate its relationship with clinico-pathological features of high-grade MIBC, and to describe its function in MIBC cells in vitro. TUG1 expression levels were determined in paired tumor and adjacent non-tumor bladder tissues of 47 patients with high-grade MIBC using real-time PCR. Cell line T-24 and siRNA silencing were used to study the TUG1 function in vitro. We observed significantly increased levels of TUG1 in tumor tissue in comparison to adjacent non-tumor bladder tissue (P < 0.0001). TUG1 levels were significantly increased in metastatic tumors (P = 0.0147) and were associated with shorter overall survival of MIBC patients (P = 0.0241). TUG1 silencing in vitro led to 34 % decrease in cancer cell proliferation (P = 0.0004) and 23 % reduction in migration capacity of cancer cells (P < 0.0001). We did not observe any significant effects of TUG1 silencing on cell cycle distribution and number of apoptotic cells. Our study confirmed overexpression of TUG1 in MIBC tumor tissue and described its association with worse overall survival in high-grade MIBC patients. Together with in vitro observations, these data suggest an oncogenic role of TUG1 and its potential usage as biomarker or therapeutic target in MIBC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-016-5177-9DOI Listing

Publication Analysis

Top Keywords

long non-coding
12
non-coding rna
12
rna tug1
12
high-grade muscle-invasive
8
muscle-invasive bladder
8
bladder cancer
8
tug1 function
8
expression levels
8
tug1 tumor
8
tumor tissue
8

Similar Publications

Background: Long non-coding RNA (lncRNA) U731166 and microRNA (miR)-3607-3p are two ncRNAs with critical roles in cancer biology, while their involvement in esophageal squamous-cell carcinomas (ESCC) is unclear. We predicted that U731166 and miR-3607-3p might interact with each other. This study aimed to investigate their role and interaction in ESCC.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is highly invasive and metastatic to the lymph nodes. Therefore, it is an urgent priority to distinguish novel biomarkers and molecular mechanisms of lymph node metastasis as the first step to the disease investigation. Long non-coding RNAs (lncRNAs) have widely been explored in cancer tumorigenesis, progression, and invasion.

View Article and Find Full Text PDF

Objective: Long non-coding RNAs (lncRNAs) participate in the formation, progression, and metastasis of cancer. This study aimed to explore the roles of the lncRNA ST8SIA6 antisense RNA 1 (ST8SIA6-AS1) in tumorigenesis and elucidate the underlying molecular mechanism of its upregulation in hepatocellular carcinoma (HCC).

Material And Methods: A total of 56 in-house pairs of HCC tissues were examined, and ST8SIA6-AS1 levels were determined through real-time polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Localization is the key to action: regulatory peculiarities of lncRNAs.

Front Genet

December 2024

Department of Biophysics, Laboratory of DNA Repair and Aging, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

To understand the transcriptomic profile of an individual cell in a multicellular organism, we must comprehend its surrounding environment and the cellular space where distinct molecular stimuli responses are located. Contradicting the initial perception that RNAs were nonfunctional and that only a few could act in chromatin remodeling, over the last few decades, research has revealed that they are multifaceted, versatile regulators of most cellular processes. Among the various RNAs, long non-coding RNAs (LncRNAs) regulate multiple biological processes and can even impact cell fate.

View Article and Find Full Text PDF

Upregulation of long non-coding RNA ENSG00000267838 is related to the high risk of progression and non-response to chemoradiotherapy treatment for cervical cancer.

Noncoding RNA Res

April 2025

Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil.

Cervical cancer (CC) is a global public health concern, primarily caused by persistent infection with oncogenic types of human papillomavirus (HPV). The World Health Organization (WHO) has established a plan to eliminate CC as a public health issue by the year 2100. However, the implementation of the HPV vaccine is impeded by vaccine restrictions and misinformation despite its demonstrated effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!