Interactions between predator and prey, or parasitoid and host, are shaped by trait- and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs) and host-produced kairomones. Hosts are frequently accompanied by non-host herbivores that are unsuitable for the parasitoid. These non-hosts may interfere with host location primarily through trait-mediated processes, by their own infochemicals, and their induction of the emission of plant volatiles. Although it is known that single non-hosts can interfere with parasitoid host location, it is still unknown whether the observed effects are due to species specific characteristics or to the feeding habits of the non-host herbivores. Here we addressed whether the feeding guild of non-host herbivores differentially affects foraging of the parasitoid Cotesia glomerata for its common host, caterpillars of Pieris brassicae feeding on Brassica oleracea plants. We used different phloem-feeding and leaf-chewing non-hosts to study their effects on host location by the parasitoid when searching for host-infested plants based on HIPVs and when searching for hosts on the plant using infochemicals. To evaluate the ultimate effect of these two phases in host location, we studied parasitism efficiency of parasitoids in small plant communities under field-tent conditions. We show that leaf-chewing non-hosts primarily affected host location through trait-mediated effects via plant volatiles, whereas phloem-feeding non-hosts exerted trait-mediated effects by affecting foraging efficiency of the parasitoid on the plant. These trait-mediated effects resulted in associational susceptibility of hosts in environments with phloem feeders and associational resistance in environments with non-host leaf chewers.

Download full-text PDF

Source
http://dx.doi.org/10.1890/15-1300.1DOI Listing

Publication Analysis

Top Keywords

host location
20
plant volatiles
12
non-host herbivores
12
trait-mediated effects
12
feeding guild
8
guild non-host
8
community members
8
parasitoid host
8
non-hosts interfere
8
location trait-mediated
8

Similar Publications

Herpesviruses rely on host RNA polymerae II (RNA Pol II) for their mRNA transcription, yet the mechanisms of which has been poorly defined, while certain herpesviruses can enhance viral gene transcription by altering the RNA Pol II location, modulating its phosphorylation, or directly interacting with RNA Pol II. However, the influence of herpesviruses on RNA Pol II transcription extends beyond these direct effects. Here, we present a novel mechanism by which the host cell cycle regulates viral gene transcription via RNA Pol II during infection by Anatid Herpesvirus 1 (AnHV-1), an avian alpha-herpesvirus.

View Article and Find Full Text PDF

Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.

View Article and Find Full Text PDF

Background: Ips typographus (L.), the eight-toothed spruce bark beetle (Coleoptera: Scolytinae), has devastated European Norway spruce (Picea abies) forests in recent years. For the first time, I.

View Article and Find Full Text PDF

SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.

View Article and Find Full Text PDF

Environmental and population influences on mummichog () gut microbiomes.

Microbiol Spectr

January 2025

Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!