Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/scientificamerican0816-10 | DOI Listing |
ISME J
January 2025
Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, 18119 Germany.
Dormancy is a wide-spread key life history trait observed across the tree of life. Many plankton species form dormant cells stages that accumulate in aquatic sediments and under anoxic conditions, form chronological records of past species and population dynamics under changing environmental conditions. Here we report on the germination of a microscopic alga, the abundant marine diatom Skeletonema marinoi that had remained dormant for up to 6871 ± 140 years in anoxic sediments of the Baltic Sea and resumed growth when exposed to oxygen and light.
View Article and Find Full Text PDFEcol Evol
December 2024
Program in Ecology and Evolutionary Biology, School of Biological Sciences University of Oklahoma Norman Oklahoma USA.
Most studies of local adaptation substitute the correlation between spatial distance and environmental heterogeneity for the temporal dynamics over which local adaptation evolves. The availability of detailed ecological and genomic information from lake sediments provides an opportunity to study local adaptation with unparalleled clarity from the temporal perspective. Inference can be further enhanced by including multiple lakes along ecological axes to further isolate the effects of ecological change in driving local adaptation.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
All-Russia Research Institute for Agricultural Microbiology, Pushkin, Petersburg, Russia.
In this study, we sequence, assemble, and analyze the genome of endophyte Can02R isolated from the roots of the resurrection plant host, . The assembly of the strain's genome amounts to 3,965,760 bp and contains 3,989 coding sequences, among which synthetic antibiotic clusters and multidrug resistance transporters can be found.
View Article and Find Full Text PDFPlant J
December 2024
Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA.
Extreme dryness is lethal for nearly all plants, excluding the so-called resurrection plants, which evolved vegetative desiccation tolerance (VDT) by recruiting genes common in most plants. To better understand the evolution of VDT, we generated chromosome-level assemblies and improved genome annotations of two Selaginella species with contrasting abilities to survive desiccation. We identified genomic features and critical mechanisms associated with VDT through sister-group comparative genomics integrating multi-omics data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!