Concentrations of glycine (Gly) in embryo culture media are often lower (~0.1 mM) than those in oviductal or uterine fluids (≥1.2 mM). The objective of this study was to determine direct and osmolarity-dependent effects of physiological concentrations of Gly on blastocyst formation and hatching, cell allocation to the trophectoderm (TE) and inner cell mass (ICM), and metabolic activity of bovine embryos. In experiment 1, zygotes were cultured with 100 or 120 mM NaCl and 0 or 1 mM Gly for the first 72 h of culture. Blastocyst formation and hatching were improved (P<0.05) when embryos were cultured with 100 compared to 120 mM NaCl. Inclusion of 1 mM Gly improved (P<0.05) blastocyst formation compared to 0 mM Gly, but this effect was only significant (P<0.05) for embryos cultured with 120 mM NaCl, suggesting bovine embryos can utilize Gly as an osmolyte. In experiment 2, embryos were cultured with 0.1, 1.1, 2.1, or 4.1 mM Gly (100 mM NaCl) for the final 96 h of culture. Blastocyst development was not affected (P>0.05) by Gly, but hatching (0.1 mM Gly, 18.2%) was improved (P<0.05) when embryos were cultured with 1.1 (31.4%) or 2.1 (29.4%) mM Gly. Blastocyst, TE, and ICM cell numbers were not affected (P>0.05) by Gly in either experiment. Blastocysts produced alanine, glutamine, pyruvate, and urea and consumed aspartate, but this metabolic profile was not affected (P>0.05) by Gly. In conclusion, Gly (1.0 mM) improves the development of both early and late stage embryos, but beneficial effects are more pronounced for early embryos exposed to elevated osmolarity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961386 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159581 | PLOS |
eNeuro
June 2021
Neurotechnology Center, Department Biological Sciences, Columbia University, New York, NY 10027.
The neural code relates the activity of the nervous system to the activity of the muscles to the generation of behavior. To decipher it, it would be ideal to comprehensively measure the activity of the entire nervous system and musculature in a behaving animal. As a step in this direction, we used the cnidarian to explore how physiological and environmental conditions alter simple contractile behavior and its accompanying neural and muscle activity.
View Article and Find Full Text PDFPLoS One
July 2017
National Foundation for Fertility Research, 10290 RidgeGate Cr., Lone Tree, CO, 80124, United States of America.
Concentrations of glycine (Gly) in embryo culture media are often lower (~0.1 mM) than those in oviductal or uterine fluids (≥1.2 mM).
View Article and Find Full Text PDFJ Hypertens
October 1998
INSERM U400, Faculté de Médecine, Créteil, France.
Background: Abnormal Na,K,Cl cotransport is thought to be a pathogenic factor in Dahl salt-sensitive rat models, but the only direct evidence for this is an increased cotransport activity found in erythrocytes from salt-loaded Dahl salt-sensitive rats.
Objective: To re-examine erythrocyte cotransport fluxes and a circulating cotransport inhibitory factor (CIF) in inbred Dahl rats maintained on a low (0.2%) salt diet.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!