The use of botanical medicine by practitioners and the general public has dramatically increased in recent years. Most of these botanical therapeutics are obtained through commercial manufacturers or nutraceutical companies. The current standard of practice that manufacturers typically use to standardize botanicals is done based on the level of a well-known, abundant marker compound present in the botanical. This study evaluated the putative correlation between the level of a marker compound and the biological activity of eight common botanicals. Overall, the standardization of a botanical based on a marker compound was found not to be a reliable method when compared to in vitro bioactivity. A marker compound is often not the biologically active component of a plant and therefore the level of such a marker compound does not necessarily correlate with biological activity or therapeutic efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961437PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159857PLOS

Publication Analysis

Top Keywords

marker compound
20
standardization botanical
8
level marker
8
biological activity
8
marker
6
compound
5
lack bioactive
4
bioactive predictability
4
predictability marker
4
marker compounds
4

Similar Publications

Xinnaoxin capsule alleviates neuropathological changes and cognitive deficits in Alzheimer's disease mouse model induced by D-galactose and aluminum chloride via reducing neuroinflammation and protecting synaptic proteins.

J Ethnopharmacol

January 2025

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China. Electronic address:

Ethnopharmacological Relevance: Originally formulated to mitigate high-altitude sickness, Xinnaoxin capsules (XNX) are composed of three traditional Chinese medicines (Rhodiola rosea L., Lycium barbarum L. and Hippophae rhamnoides) with properties of anti-hypoxia, anti-fatigue, and anti-aging.

View Article and Find Full Text PDF

Shared chemoresistance genes in ESCC and cervical Cancer: Insights from pharmacogenomics and Mendelian randomization.

Int Immunopharmacol

January 2025

Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; Ultrapathology (Biomedical Electron Microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; FuRong Laboratory, Changsha City, Hunan Province, China. Electronic address:

Background: Neoadjuvant chemotherapy, particularly the use of platinum-based compounds and taxanes, is pivotal in the treatment of epithelial-derived tumors, such as cervical cancer and esophageal squamous cell carcinoma (ESCC); however, resistance remains a significant challenge. Utilizing Mendelian randomization (MR) with pharmacogenomics offers a novel approach to understanding the genetic underpinnings of drug responses, thereby aiding in personalized treatment.

Methods: Single-cell RNA sequencing (scRNA-seq) analysis revealed a shared cellular subpopulation of CD8 + T effector memory (CD8 + TEM) cells that are pivotal in mediating chemotherapy resistance in ESCC and cervical cancer.

View Article and Find Full Text PDF

Examining structure-activity relationships of ManNAc analogs used in the metabolic glycoengineering of human neural stem cells.

Biomater Adv

December 2024

Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:

This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.

View Article and Find Full Text PDF

Textiles provide a valuable source of information regarding past cultures and their artistic practices. Understanding ancient textiles requires identifying the raw materials used, since the origin of dyes and fibers may be from plants or animals, with the specific species used varying based on geography, trade routes and cultural significance. A selection of nine Chancay textile fragments attributed to 800-1200 CE were studied with liquid chromatography mass spectrometry (LC-MS) and direct analysis in real time mass spectrometry (DART-MS) to identify the chemical compounds in extracts of natural dyes used to create green, blue, red, yellow and black colors.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.

Background: Despite recent breakthroughs, Alzheimer's disease (AD) remains untreatable. In addition, we are still lacking robust biomarkers for early diagnosis and promising novel targets for therapeutic intervention. To enable utilizing the entirety of molecular evidence in the discovery and prioritization of potential novel biomarkers and targets, we have developed the AD Atlas, a network-based multi-omics data integration platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!