A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Capture and Reversible Storage of Volatile Iodine by Novel Conjugated Microporous Polymers Containing Thiophene Units. | LitMetric

Conjugated microporous polymers having thiophene building blocks (SCMPs), which originated from ethynylbenzene monomers with 2,3,5-tribromothiophene, were designedly synthesized through Pd(0)/CuI catalyzed Sonogashira-Hagihara cross-coupling polymerization. The morphologies, structure and physicochemical properties of the as-synthesized products were characterized through scanning electron microscope (SEM), thermogravimeter analysis (TGA), (13)C CP/MAS solid state NMR and Fourier transform infrared spectroscope (FTIR) spectra. Nitrogen sorption-desorption analysis shows that the as-synthesized SCMPs possesses a high specific surface area of 855 m(2) g(-1). Because of their abundant porosity, π-conjugated network structure, as well as electron-rich thiophene building units, the SCMPs show better adsorption ability for iodine and a high uptake value of 222 wt % was obtained, which can compete with those nanoporous materials such as silver-containing zeolite, metal-organic frameworks (MOFs) and conjugated microporous polymers (CMPs), etc. Our study might provide a new possibility for the design and synthesis of functional CMPs containing electron-rich building units for effective capture and reversible storage of volatile iodine to address environmental issues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b06569DOI Listing

Publication Analysis

Top Keywords

conjugated microporous
12
microporous polymers
12
capture reversible
8
reversible storage
8
storage volatile
8
volatile iodine
8
polymers thiophene
8
thiophene building
8
building units
8
iodine novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!