Objective: The aim of study was to investigate whether cell-penetrating peptides could amplify cellular uptake of plasmid DNA (pDNA) loaded self-nanoemulsifying drug delivery systems (SNEDDS) by mucosal epithelial cells, thereby enhancing transfection efficiency.
Methods: HIV-1 Tat peptide-oleoyl conjugate (TAT-OL) was synthesized through amide bond formation between HIV-1 Tat-protein 49-57 (TAT) and oleoyl-chloride (OL). SNEDDS formulation contained 29.7% each of Cremophor EL, Capmul MCM and Crodamol, 9.9% propylene glycol and 1% TAT-OL. SNEDDS with OL instead of TAT-OL served as control.
Results: Fluorescent-microscopy demonstrated 0.5% (m/v) nanoemulsions were suitable for subsequent studies. Mucus diffusion of nanoemulsion loaded with fluorescein diacetate (FDA) was 1.5-fold increased by incorporation of TAT-OL. Confocal microscopy confirmed that droplets of nanoemulsions were successfully internalized. Furthermore, quantitative analysis showed that addition of TAT-OL increases uptake of nanoemulsions by 2.3- and 2.6-folds after 2 and 4 hours of incubation, respectively. Cellular internalization pathways were found with substantial decrease in uptake in presence of indomethacin and chlorpromazine. Transfection efficiency investigated on HEK-293-cells was found to be 1.7- and 1.8-fold higher for SNEDDS loaded with TAT-OL compared to Lipofectin and control, respectively.
Conclusion: In comparison to prevailing lipid and polymer-based delivery systems, these novel cell-penetrating SNEDDS likely represent most effective, simplistic and expedite dosage form for mucosal gene delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17425247.2016.1213236 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!