In humans, high-grade gliomas may infiltrate across the corpus callosum resulting in bihemispheric lesions that may have symmetrical, winged-like appearances. This particular tumor manifestation has been coined a "butterfly" glioma (BG). While canine and human gliomas share many neuroradiological and pathological features, the BG morphology has not been previously reported in dogs. Here, we describe the magnetic resonance imaging (MRI) characteristics of BG in three dogs and review the potential differential diagnoses based on neuroimaging findings. All dogs presented for generalized seizures and interictal neurological deficits referable to multifocal or diffuse forebrain disease. MRI examinations revealed asymmetrical (2/3) or symmetrical (1/3), bihemispheric intra-axial mass lesions that predominantly affected the frontoparietal lobes that were associated with extensive perilesional edema, and involvement of the corpus callosum. The masses displayed heterogeneous T1, T2, and fluid-attenuated inversion recovery signal intensities, variable contrast enhancement (2/3), and mass effect. All tumors demonstrated classical histopathological features of glioblastoma multiforme (GBM), including glial cell pseudopalisading, serpentine necrosis, microvascular proliferation as well as invasion of the corpus callosum by neoplastic astrocytes. Although rare, GBM should be considered a differential diagnosis in dogs with an MRI evidence of asymmetric or symmetric bilateral, intra-axial cerebral mass lesions with signal characteristics compatible with glioma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931820 | PMC |
http://dx.doi.org/10.3389/fvets.2016.00040 | DOI Listing |
BMJ Open
December 2024
Unité de recherche Clinique, Hôpital Bichat-Claude-Bernard, Paris, Île-de-France, France.
Introduction: Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Treatments for TBI patients are limited and none has been shown to provide prolonged and long-term neuroprotective or neurorestorative effects. A growing body of evidence suggests a link between TBI-induced neuro-inflammation and neurodegenerative post-traumatic disorders.
View Article and Find Full Text PDFNeuropediatrics
December 2024
Great Ormond Street Hospital for Children, London, United Kingdom of Great Britain and Northern Ireland.
We describe a set of monozygotic twins with GRIN2B-related neurodevelopmental disorder (GRIN2B-ND) who exhibited distinct clinical and imaging characteristics due to a de novo heterozygous pathogenic variant in the GRIN2B gene (c.2453T>C, p.Met818Thr).
View Article and Find Full Text PDFNat Commun
December 2024
Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.
View Article and Find Full Text PDFBMC Pediatr
December 2024
Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA.
Background: Intravenous lipid emulsions are an essential component of nutritional support for very preterm infants. Many neonatal intensive care units have transitioned from traditional soybean oil-only to fish oil-containing multicomponent lipid emulsions, but the neurodevelopmental implications have not been well-explored. The primary aim of this study was to assess extrauterine third trimester brain growth in very preterm infants supported with soybean oil-only compared to fish-oil containing multicomponent lipid emulsions; white matter development and neurobehavioral regulation at term were also investigated.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Neuroradiology Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system. Structures affected in MS include the corpus callosum, connecting the hemispheres. Studies have shown that in mammalian brains, structural connectivity is organized according to a conservation principle, an inverse relationship between intra- and interhemispheric connectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!