Bioelectric cell properties have been revealed as powerful targets for modulating stem cell function, regenerative response, developmental patterning, and tumor reprograming. Spatio-temporal distributions of endogenous resting potential, ion flows, and electric fields are influenced not only by the genome and external signals but also by their own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both determine, and are themselves gated by, cellular resting potential. Thus, the origin and progression of bioelectric patterns in multicellular tissues is complex, which hampers the rational control of voltage distributions for biomedical interventions. To improve understanding of these dynamics and facilitate the development of bioelectric pattern control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a finite volume method multiphysics simulator, which predicts bioelectric patterns and their spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking changes to the fundamental property of ion concentration. We validate performance of the simulator by matching experimentally obtained data on membrane permeability, ion concentration and resting potential to simulated values, and by demonstrating the expected outcomes for a range of well-known cases, such as predicting the correct transmembrane voltage changes for perturbation of single cell membrane states and environmental ion concentrations, in addition to the development of realistic transepithelial potentials and bioelectric wounding signals. In silico experiments reveal factors influencing transmembrane potential are significantly different in gap junction-networked cell clusters with tight junctions, and identify non-linear feedback mechanisms capable of generating strong, emergent, cluster-wide resting potential gradients. The BETSE platform will enable a deep understanding of local and long-range bioelectrical dynamics in tissues, and assist the development of specific interventions to achieve greater control of pattern during morphogenesis and remodeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933718 | PMC |
http://dx.doi.org/10.3389/fbioe.2016.00055 | DOI Listing |
J Clin Med
December 2024
Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada.
Hypertensive response to exercise (HRE) is an established risk factor for cardiovascular events. HRE is prevalent among people with excess adiposity. Both obesity and HRE have been individually associated with adverse cardiac remodeling.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering and Automation, Northeastern University, Wenhua Street, Shenyang 110819, China.
The early prediction of Alzheimer's disease (AD) risk in healthy individuals remains a significant challenge. This study investigates the feasibility of task-state EEG signals for improving detection accuracy. Electroencephalogram (EEG) data were collected from the Multi-Source Interference Task (MSIT) and Sternberg Memory Task (STMT).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
This study aimed to investigate β-Caryophyllene (BCA) pharmacokinetics as well as the potential antitumor activity and mechanism of action of BCA and eugenol (EU), alone or in combination, in U87 glioblastoma (GB) cells. The BCA pharmacokinetic was studied by evaluating its concentration profiles in rat blood and cerebrospinal fluid after oral and intravenous administration. EU and BCA antitumor mechanisms were assessed by comparing their effects in U87 GB cells and non-tumoral HMC3 cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory for Functional and Metabolic Imaging (LIFMET), Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station 3, 1015 Lausanne, Switzerland.
Photobiomodulation (PBM) therapy, a therapeutic approach utilizing low-level light, has garnered significant attention for its potential to modulate various biological processes. This study aimed at optimizing and investigating the effects of PBM on angiogenesis and mitochondrial metabolic activity. In vitro experiments using human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs) were performed to assess PBM's impacts on cell migration, proliferation, endogenous protoporphyrin IX production, mitochondrial membrane potential, Rhodamine 123 fluorescence lifetime, mitochondrial morphology, and oxygen consumption.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
Ovarian aging significantly impacts female fertility, with mitochondrial dysfunction emerging as a key factor. This study investigated the effects of recombinant follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on mitochondrial function and metabolism in aging female reproductive cells. Human granulosa cells (HGL5) were treated with FSH/LH or not.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!