The Pho4 transcription factor is required for growth under low environmental phosphate concentrations in Saccharomyces cerevisiae. A characterization of Candida albicans pho4 mutants revealed that these cells are more susceptible to both osmotic and oxidative stress and that this effect is diminished in the presence of 5% CO2 or anaerobiosis, reflecting the relevance of oxygen metabolism in the Pho4-mediated response. A pho4 mutant was as virulent as wild type strain when assayed in the Galleria mellonella infection model and was even more resistant to murine macrophages in ex vivo killing assays. The lack of Pho4 neither impairs the ability to colonize the murine gut nor alters the localization in the gastrointestinal tract. However, we found that Pho4 influenced the colonization of C. albicans in the mouse gut in competition assays; pho4 mutants were unable to attain high colonization levels when inoculated simultaneously with an isogenic wild type strain. Moreover, pho4 mutants displayed a reduced adherence to the intestinal mucosa in a competitive ex vivo assays with wild type cells. In vitro competitive assays also revealed defects in fitness for this mutant compared to the wild type strain. Thus, Pho4, a transcription factor involved in phosphate metabolism, is required for adaptation to stress and fitness in C. albicans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935684 | PMC |
http://dx.doi.org/10.3389/fmicb.2016.01062 | DOI Listing |
Lung Cancer
December 2024
Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
Background: The upfront treatment of non-oncogene-addicted NSCLC relies on immunotherapy alone (ICI) or in combination with chemotherapy (CT-ICI). Genomic aberrations such as KRAS, TP53, KEAP1, SMARCA4, or STK11 may impact survival outcomes.
Methods: We performed an observational study of 145 patients treated with first-line IO or CT-ICI for advanced non-squamous (nsq) NSCLC at our institution tested with an extensive lab-developed NGS panel.
J Neurochem
January 2025
Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland. Electronic address:
RNA-protein interactions orchestrate hundreds of pathways in homeostatic and stressed cells. We applied an RNA-protein interactome capture method called protein cross-linked RNA extraction (XRNAX) to shed light on the RNA-bound proteome in dysmyelination. We found sets of canonical RNA-binding proteins (RBPs) regulating alternative splicing and engaged in the cytoplasmic granules to be perturbed at the level of their RNA interactome.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China.
Plant lipid transfer proteins (LTPs) are distinguished by their capacity to facilitate lipid transport in vitro between membranes. This includes the transportation of lipid constituents from the tapetum to the microspore, thereby playing a pivotal role in the synthesis and construction of the pollen wall, encompassing the formation of the pollen aperture. However, our understanding of LTPs and their role in pollen aperture formation in rice remains limited.
View Article and Find Full Text PDFMol Neurodegener
December 2024
Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
Background: The gene C9orf72 harbors a non-coding hexanucleotide repeat expansion known to cause amyotrophic lateral sclerosis and frontotemporal dementia. While previous studies have estimated the length of this repeat expansion in multiple tissues, technological limitations have impeded researchers from exploring additional features, such as methylation levels.
Methods: We aimed to characterize C9orf72 repeat expansions using a targeted, amplification-free long-read sequencing method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!