Ovarian cancer is the leading cause of death in gynecological diseases. Thyroid hormone promotes proliferation of ovarian cancer cells via cell surface receptor integrin αvβ3 that activates extracellular regulated kinase (ERK1/2). However, the mechanisms are still not fully understood. Thyroxine (T4) at a physiologic total hormone concentration (10-7 M) significantly increased proliferating cell nuclear antigen (PCNA) abundance in these cell lines, as did 3, 5, 3'-triiodo-L-thyronine (T3) at a supraphysiologic concentration. Thyroid hormone (T4 and T3) treatment of human ovarian cancer cells resulted in enhanced activation of the Ras/MAPK(ERK1/2) signal transduction pathway. An MEK inhibitor (PD98059) blocked hormone-induced cell proliferation but not ER phosphorylation. Knock-down of either integrin αv or β3 by RNAi blocked thyroid hormone-induced phosphorylation of ERK1/2. We also found that thyroid hormone causes elevated phosphorylation and nuclear enrichment of estrogen receptor α (ERα). Confocal microscopy indicated that both T4 and estradiol (E2) caused nuclear translocation of integrin αv and phosphorylation of ERα. The specific ERα antagonist (ICI 182,780; fulvestrant) blocked T4-induced ERK1/2 activation, ERα phosphorylation, PCNA expression and proliferation. The nuclear co-localization of integrin αv and phosphorylated ERα was inhibited by ICI. ICI time-course studies indicated that mechanisms involved in T4- and E2-induced nuclear co-localization of phosphorylated ERα and integrin αv are dissimilar. Chromatin immunoprecipitation results showed that T4-induced binding of integrin αv monomer to ERα promoter and this was reduced by ICI. In summary, thyroid hormone stimulates proliferation of ovarian cancer cells via crosstalk between integrin αv and ERα, mimicking functions of E2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421843PMC
http://dx.doi.org/10.18632/oncotarget.10757DOI Listing

Publication Analysis

Top Keywords

integrin αv
24
ovarian cancer
20
cancer cells
16
thyroid hormone
16
proliferation ovarian
12
erα
9
crosstalk integrin
8
integrin αvβ3
8
thyroid hormone-induced
8
nuclear co-localization
8

Similar Publications

Current adeno-associated virus (AAV) gene therapy using nature-derived AAVs is limited by non-optimal tissue targeting. In the treatment of muscular diseases (MD), high doses are often required but can lead to severe adverse effects. Here, we rationally design an AAV capsid that specifically targets skeletal muscle to lower treatment doses.

View Article and Find Full Text PDF

Polymerizing laminins in development, health, and disease.

J Biol Chem

July 2024

Department of Biochemistry and Microbiology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA.

Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates.

View Article and Find Full Text PDF

ANGPTL3 accelerates atherosclerotic progression via direct regulation of M1 macrophage activation in plaque.

J Adv Res

May 2024

Beijing Institute of Hepatology, Beijing Youan Hospital, Beijing 100069, China; Department of Science and Technology, Beijing Youan Hospital, Beijing 100069, China. Electronic address:

Introduction: The N-terminal domain of angiopoietin-like protein 3 (ANGPTL3) inhibits lipoprotein lipase activity. Its C-terminal fibrinogen-like (FBN) domain is a ligand of macrophage integrin αvβ3.

Objectives: ANGPTL3 might home to plaque where it directly regulates macrophage function via integrin αvβ3 for atherosclerosis progression.

View Article and Find Full Text PDF

Adhesion molecules play critical roles in maintaining the structural integrity of the airway epithelium in airways under stress. Previously, we reported that catenin alpha-like 1 (CTNNAL1) is downregulated in an asthma animal model and upregulated at the edge of human bronchial epithelial cells (HBECs) after ozone stress. In this work, we explore the potential role of CTNNAL1 in the structural adhesion of HBECs and its possible mechanism.

View Article and Find Full Text PDF

The TRAIL (Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand) is a promising candidate for cancer treatment due to its unique ability to selectively induce programmed cell death, or apoptosis, in cancer cells while sparing healthy ones. This selectivity arises from the preferential binding of the TRAIL to death receptors on cancer cells, triggering a cascade of events that lead to their demise. However, significant limitations in using the TRAIL for cancer treatment are the administration of the TRAIL protein that can potentially lead to tissue toxicity (off-target) and the short half-life of the TRAIL in the body which may necessitate frequent and sustained administration; these can pose logistical challenges for long-term treatment regimens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!