Aberrant epigenetic reprogramming occurs frequently in the development of tumors. Histone H3 lysine 27 trimethylation (H3K27me3) exerts a repressive epigenetic mark on a large number of genes. UTX and JMJD3 are the only two histone demethylases which activate gene expression via demethylating H3K27me3 to H3K27me2 or H3K27me1. Current studies show that dysregulation of these two proteins are heavily linked to oncogenesis in various tissue types. Accumulating evidence suggested that there is remarkable therapeutic potential of targeting JMJD3 or UTX in different types of cancer. Herein, we shall give a brief review on the functional roles of JMJD3 and UTX in cancers and evaluate the available compounds and agents targeting UTX and JMJD3. Finally, we also discuss the several modalities that target UTX and JMJD3 for cancer therapy. This review will help to develop novel strategies to abolish or restore effects of UTX and JMJD3 in the pathogenesis of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929867323666160725093522 | DOI Listing |
Cardiovasc Diabetol
April 2024
Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
Background: Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium.
View Article and Find Full Text PDFClin Epigenetics
April 2024
Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China.
Background: The intriguing connection between selenium and cancer resembles a captivating puzzle that keeps researchers engaged and curious. While selenium has shown promise in reducing cancer risks through supplementation, its interaction with epigenetics in cervical cancer remains a fascinating yet largely unexplored realm. Unraveling the intricacies of selenium's role and its interaction with epigenetic factors could unlock valuable insights in the battle against this complex disease.
View Article and Find Full Text PDFGene
June 2024
Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Dept. of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy. Electronic address:
Background: Epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, are highly involved in the regulation of hepatocyte viability, proliferation, and plasticity. We have previously demonstrated that repression of H3K27 methylation in differentiated hepatic HepaRG cells by treatment with GSK-J4, an inhibitor of JMJD3 and UTX H3K27 demethylase activity, changed their phenotype, inducing differentiated hepatocytes to proliferate. In addition to the epigenetic enzymatic role in the regulation of the retro-differentiation process, emerging evidence indicate that microRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration.
View Article and Find Full Text PDFmBio
April 2024
Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.
Unlabelled: The fate of herpesvirus genomes following entry into different cell types is thought to regulate the outcome of infection. For the Herpes simplex virus 1 (HSV-1), latent infection of neurons is characterized by association with repressive heterochromatin marked with Polycomb silencing-associated lysine 27 methylation on histone H3 (H3K27me). However, whether H3K27 methylation plays a role in repressing lytic gene expression in non-neuronal cells is unclear.
View Article and Find Full Text PDFCancers (Basel)
February 2024
National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany.
(1) Background: The sensitivity of head and neck squamous cell carcinoma (HNSCC) to ionizing radiation, among others, is determined by the number of cells with high clonogenic potential and stem-like features. These cellular characteristics are dynamically regulated in response to treatment and may lead to an enrichment of radioresistant cells with a cancer stem cell (CSC) phenotype. Epigenetic mechanisms, particularly DNA and histone methylation, are key regulators of gene-specific transcription and cellular plasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!