Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330951 | PMC |
http://dx.doi.org/10.1007/s10544-016-0093-8 | DOI Listing |
PLoS Pathog
January 2025
The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.
HIV infection implicates a spectrum of tissues in the human body starting with viral transmission in the anogenital tract and subsequently persisting in lymphoid tissues and brain. Though studies using isolated cells have contributed significantly towards our understanding of HIV infection, the tissue microenvironment is characterised by a complex interplay of a range of factors, all of which can influence the course of infection but are otherwise missed in ex vivo studies. To address this knowledge gap, it is necessary to investigate the dynamics of infection and the host immune response in situ using imaging-based approaches.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
A common heavy metal in many facets of daily life is aluminum (AlCl3), which can be found in food, toothpaste, cosmetics, food additives, and numerous pharmaceutical items. The hippocampus, liver, and kidneys have the highest concentrations of this powerful neurotoxin, which also accumulates over time and contributes to the development of a number of cognitive disorders. Long-term overconsumption of AlCl3 results in hepatic and renal toxicity as well as neuronal inflammation.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.
The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.
This study, in vivo and in vitro, investigated the role of brain-derived neurotrophic factor (BDNF) in skeletal muscle adaptations to aerobic exercise. BDNF is a contraction-induced protein that may play a role in muscle adaptations to aerobic exercise. BDNF is involved in muscle repair, increased fat oxidation, and mitochondrial biogenesis, all of which are adaptations observed with aerobic training.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!