Left ventricular (LV) mass and geometry are associated with risk of cardiovascular disease (CVD). We sought to determine whether LV mass and geometry contribute to risk prediction for CVD in adults aged ≥65 years of the Cardiovascular Health Study. We indexed LV mass to body size, denoted as LV mass index (echo-LVMI), and we defined LV geometry as normal, concentric remodeling, and eccentric or concentric LV hypertrophy. We added echo-LVMI and LV geometry to separate 10-year risk prediction models containing traditional risk factors and determined the net reclassification improvement (NRI) for incident coronary heart disease (CHD), CVD (CHD, heart failure [HF], and stroke), and HF alone. Over 10 years of follow-up in 2,577 participants (64% women, 15% black, mean age 72 years) for CHD and CVD, the adjusted hazards ratios for a 1-SD higher echo-LVMI were 1.25 (95% CI 1.14 to 1.37), 1.24 (1.15 to 1.33), and 1.51 (1.40 to 1.62), respectively. Addition of echo-LVMI to the standard model for CHD resulted in an event NRI of -0.011 (95% CI -0.037 to 0.028) and nonevent NRI of 0.034 (95% CI 0.008 to 0.076). Addition of echo-LVMI and LV geometry to the standard model for CVD resulted in an event NRI of 0.013 (95% CI -0.0335 to 0.0311) and a nonevent NRI of 0.043 (95% CI 0.011 to 0.09). The nonevent NRI was also significant with addition of echo-LVMI for HF risk prediction (0.10, 95% CI 0.057 to 0.16). In conclusion, in adults aged ≥65 years, echo-LVMI improved risk prediction for CHD, CVD, and HF, driven primarily by improved reclassification of nonevents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988901 | PMC |
http://dx.doi.org/10.1016/j.amjcard.2016.06.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!