Categorical learning is dependent on feedback. Here, we compare how positive and negative feedback affect information-integration (II) category learning. Ashby and O'Brien (2007) demonstrated that both positive and negative feedback are required to solve II category problems when feedback was not guaranteed on each trial, and reported no differences between positive-only and negative-only feedback in terms of their effectiveness. We followed up on these findings and conducted 3 experiments in which participants completed 2,400 II categorization trials across three days under 1 of 3 conditions: positive feedback only (PFB), negative feedback only (NFB), or both types of feedback (CP; control partial). An adaptive algorithm controlled the amount of feedback given to each group so that feedback was nearly equated. Using different feedback control procedures, Experiments 1 and 2 demonstrated that participants in the NFB and CP group were able to engage II learning strategies, whereas the PFB group was not. Additionally, the NFB group was able to achieve significantly higher accuracy than the PFB group by Day 3. Experiment 3 revealed that these differences remained even when we equated the information received on feedback trials. Thus, negative feedback appears significantly more effective for learning II category structures. This suggests that the human implicit learning system may be capable of learning in the absence of positive feedback.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5239721 | PMC |
http://dx.doi.org/10.3758/s13421-016-0638-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!