Stathmin 1 plays a role in endometrial decidualisation by regulating hypoxia inducible factor-1α and vascular endothelial growth factor during embryo implantation.

Reprod Fertil Dev

Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan, 610041, PR China.

Published: August 2017

The aim of the present study was to explore the potential mechanism underlying stathmin 1 (Stmn1) regulation of embryo implantation, as a continuation of previous proteomic research. Adult healthy female mice were mated naturally with fertile males. Murine uterine tissue was collected during the peri-implantation period. Local expression of Stmn1 during embryo implantation was detected by immunohistochemistry (IHC), which showed that Stmn1 was extensively expressed in endometrial glandular epithelium, vascular endothelium, luminal epithelium and the underlying stromal cells at the implantation site on Day 5. The role of Stmn1 during embryo implantation was evaluated by transient knockdown of Stmn1 in vivo using short interference (si) RNA, and some associated factors including Akt, phosphorylated (p-) Akt, hypoxia-inducible factor (HIF)-1α, prolactin (PRL), insulin-like growth factor binding protein (IGFBP) 1 and vascular endothelial growth factor (VEGF) were examined by western blotting analysis and ELISA. The number of embryos implanted after Stmn1-siRNA infusion into the lumen of one uterine horn was lower than that with normal pregnancies (2.2±1.5 vs 8.6±0.5 respectively; P<0.05). The expression of VEGF, HIF-1α, p-Akt and the decidualisation biomarkers PRL and IGFBP 1 was upregulated at the implantation site on Day 5, but downregulated after Stmn1-siRNA infusion. These findings suggest that during embryo implantation, knockdown of Stmn1 suppresses decidualisation by inhibiting the expression of p-Akt, HIF-1α and VEGF, thus leading to impaired embryo implantation. These findings provide clues for understanding the complicated process of embryo implantation and the potential role of Stmn1 during embryo implantation.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD15539DOI Listing

Publication Analysis

Top Keywords

embryo implantation
16
growth factor
12
vascular endothelial
8
endothelial growth
8
stmn1 embryo
8
implantation
5
stmn1
5
stathmin plays
4
plays role
4
role endometrial
4

Similar Publications

Human embryo implantation: The complex interplay between endometrial receptivity and the microbiome.

J Reprod Immunol

January 2025

Chengdu Fifth People's Hospital, (School of Medical and Life Sciences/Affiliated Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine), Chengdu, China. Electronic address:

The endometrial and vaginal microbiota have co-evolved with the reproductive tract and play a key role in both health and disease. However, the difference between endometrial and vaginal microbiota, as well as their association with reproductive outcomes in women undergoing frozen embryo transfer, remains unclear. 120 women who underwent in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) and whole embryo freezing were enrolled.

View Article and Find Full Text PDF

Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.

Methods: The study involved 45 women with a mean age of 35 ± 4.

View Article and Find Full Text PDF

: Autologous platelet-rich plasma (PRP) transfusions are a relatively new treatment method used in different fields of medicine, including the field of reproductive medicine. One of the applications of these concentrated platelet infusions is the treatment of endometrial receptivity, which is a key factor for embryo implantation. There are implications that PRP infusions can lead to increased endometrial thickness, endometrial receptivity, and significantly elevated clinical pregnancy rates.

View Article and Find Full Text PDF

Endometrial Receptivity-Lessons from "Omics".

Biomolecules

January 2025

Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Melbourne, VIC 3052, Australia.

The window of implantation (WOI) is a critical phase of the menstrual cycle during which the endometrial lining becomes receptive and facilitates embryo implantation. Drawing on findings from various branches of "omics", including genomics, epigenomics, transcriptomics, proteomics, lipidomics, metabolomics, and microbiomics, this narrative review aims to (1) discuss mechanistic insights on endometrial receptivity and its implication in infertility; (2) highlight advances in investigations for endometrial receptivity; and (3) discuss novel diagnostic and therapeutic strategies that may improve reproductive outcomes.

View Article and Find Full Text PDF

Blastocyst-Derived Lactate as a Key Facilitator of Implantation.

Biomolecules

January 2025

Melbourne IVF, East Melbourne, VIC 3002, Australia.

The blastocyst develops a unique metabolism that facilitates the creation of a specialized microenvironment at the site of implantation characterized by high levels of lactate and reduced pH. While historically perceived as a metabolic waste product, lactate serves as a signaling molecule which facilitates the invasion of surrounding tissues by cancers and promotes blood vessel formation during wound healing. However, the role of lactate in reproduction, particularly at the implantation site, is still being considered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!