Polychlorinated biphenyls (PCBs) are classified as persistent organic pollutants (POPs) regulated by the Stockholm Convention (2001). Although their production and use was stopped almost three decades ago, PCBs are environmental persistent, toxic, and bioaccumulate in biota. We assessed the levels of 7 PCB congeners (IUPAC nos. 28, 52, 101, 118, 138, 153, and 180) in sediment and fish (Oreochromis niloticus, Lates niloticus, and Rastrineobola argentea) and evaluated the potential of cestode fish endoparasite (Monobothrioides sp., Proteocephalaus sp., and Ligula intestinalis) as biomonitors of PCBs in Lake Victoria, Kenya. The median concentration of Σ7PCBs in sediments and fish were 2.2-96.3 μg/kg dw and 300-3,000 μg/kg lw, respectively. At all the sampling sites, CB138, CB153, and CB180 were the dominant PCB congeners in sediment and fish samples. Compared to the muscle of the piscine host, Proteocephalaus sp. (infecting L. niloticus) biomagnified PCBs ×6-14 while Monobothrioides sp. (infecting O. niloticus) biomagnified PCBs ×4-8. Meanwhile, L. intestinalis (infecting R. argentea) biomagnified PCBs ×8-16 compared to the muscle of unparasitized fish. We demonstrate the occurrence of moderate to high levels of PCB in sediments and fish in Lake Victoria. We also provide evidence that fish parasites bioaccumulate higher levels of PCBs than their piscine hosts and therefore provide a promising biomonitor of PCBs. We urge further a long-term study to validate the use of the above cestode fish parasites as biomonitoring tools for PCBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-016-5483-0 | DOI Listing |
HGG Adv
October 2024
Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany. Electronic address:
Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.
View Article and Find Full Text PDFNature
July 2023
Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
Nature
May 2023
Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
Nature
July 2022
Roslin Institute, University of Edinburgh, Edinburgh, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!