Polymer thin films with patterned ferroelectric domains are attractive for a broad range of applications, including the fabrication of tactile sensors, infrared detectors, and non-volatile memories. Herein, we report the use of gold nanocages (AuNCs) as plasmonic nanostructures to induce a ferroelectric-paraelectric phase transition in a poly(vinylidene fluoride) (PVDF) thin film by leveraging its photothermal effect. This technique allows us to generate patterned domains of ferroelectric PVDF within just a few seconds. The incorporation of AuNCs significantly enhances the pyroelectric response of the ferroelectric film under near-infrared irradiation. We also demonstrate the use of such patterned ferroelectric films for near-infrared sensing/imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5168801 | PMC |
http://dx.doi.org/10.1002/anie.201605405 | DOI Listing |
Chem Sci
December 2024
Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
Phosphorescent gold(iii) complexes possess long-lived emissive excited states, making them ideal for use as molecular sensors and photosensitizers for organic transformations. Literature reports indicate that gold(iii) emitters exhibit good catalytic activity in homogeneous photochemical reactions. Heterogeneous metal-organic framework (MOF)-supported gold(iii) photocatalysts are considered to show high recyclability in photochemical reactions and potentially provide new selectivities.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Biomedical Engineering, Indian Institute of Technology, Indian Institute of Technology Hyderabad, HYderabad, Telangana, 502284, INDIA.
Photothermal therapy (PTT) and photodynamic therapy (PDT) have been emerging as potential alternatives to conventional cancer treatment modalities. Gold nanoparticles, owing to their surface plasmon resonance properties, have been promising in cancer phototherapies, and extracts from potentially medicinal plants are commonly employed for the green synthesis of various nanoparticles. Some researchers also have been using chlorophyll as the photosensitizer for reactive oxygen species (ROS) generation.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.
Delivery nanosystems have been widely developed to improve the efficacy of chemotherapy. However, their performance regarding the non-specific leakage of drugs remained unsatisfactory. Herein, gold nanocages (AuNCs) were used as carriers and thermo-sensitive liposome (TSL) as a protective shell to design a camptothecin (CPT)-loaded delivery nanosystem (AuNCs/CPT@TSL) for photothermal-modulated drug release.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2025
The Affiliated Guangdong Second Provincial General Hospital of Jinan University, PR China. Electronic address:
Alpha-fetoprotein (AFP), serves as a reliable and vital biomarker for precise diagnosis and effective monitoring of hepatocellular carcinoma, requires precise detection. Herein, a sandwich-structured electrochemical immunosensor was crafted, employing three-dimensional layered porous carbon modified with gold nanoparticles (Au NPs) as the substrate and Au NPs/CuS as the labeling compound for accurate and sensitive detection of AFP. Due to the effective coordination between the 3D carbon network, Au NPs, and hollow CuS nanocubes, the sandwich-structured electrochemical immunosensor was able to produce three distinct response signals via various detection techniques, demonstrating a broad linear range (0.
View Article and Find Full Text PDFRegen Biomater
October 2024
State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!