Three-dimensional (3D) Pd-Pt alloy with coral-like nanostructures were synthesized via bubble dynamic templated electrodeposition method at room temperature. The morphology of the as-prepared nanostructures was characterized using scanning electron microscopy (SEM), EDS, high-resolution transmission electron microscopy (HRTEM), respectively. Cyclic voltammetry method was adopted to evaluate the electrocatalytic activities of the synthesized electrodes toward oxygen reduction in KCl solution. The electrochemical results indicated that the Pd-Pt alloy with coral-like nanostructures hold the high performance for oxygen reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2016.11661DOI Listing

Publication Analysis

Top Keywords

pd-pt alloy
12
alloy coral-like
12
coral-like nanostructures
12
high performance
8
performance oxygen
8
electron microscopy
8
oxygen reduction
8
nanostructures
4
nanostructures showing
4
showing high
4

Similar Publications

Single atom alloys aggregation in the presence of ligands.

Nanoscale

January 2025

Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.

Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.

View Article and Find Full Text PDF

Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr.

View Article and Find Full Text PDF

Metal-Independent Correlations for Site-Specific Binding Energies of Relevant Catalytic Intermediates.

JACS Au

December 2024

SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.

Establishing energy correlations among different metals can accelerate the discovery of efficient and cost-effective catalysts for complex reactions. Using a recently introduced coordination-based model, we can predict site-specific metal binding energies (Δ ) that can be used as a descriptor for chemical reactions. In this study, we have examined a range of metals including Ag, Au, Co, Cu, Ir, Ni, Os, Pd, Pt, Rh, and Ru and found linear correlations between predicted Δ and adsorption energies of CH and O (Δ and Δ ) at various coordination environments for all the considered metals.

View Article and Find Full Text PDF

Recent Progress in Atomically Precise Cu-M Alloy Nanoclusters.

Chemistry

December 2024

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Metal nanoclusters (NCs) with dimensions of approximately 3 nm serve as a crucial link between metal-organic complexes and metal nanoparticles, garnering significant interest due to their distinctive molecule-like characteristics. These include well-defined molecular structures, clear HOMO-LUMO transitions, quantized charge, and robust luminescence emission. Atomically precise alloy NCs, in contrast to homometallic NCs, exhibit a wealth of structures and intriguing properties, with their novel attributes often intricately tied to the positions of alloyed elements within the structure, facilitating the exploration of structure-property relationships.

View Article and Find Full Text PDF

The role of surface substitution in the atomic disorder-to-order phase transition in multi-component core-shell structures.

Nat Commun

November 2024

Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Article Synopsis
  • This study focuses on the role of intermetallic phases in catalysts, specifically examining the phase transitions and atomic diffusion in Pd@Pt-Co cubic nanoparticles during heating.
  • Using advanced microscopy techniques, researchers found that as Pd atoms diffuse outward, they partially replace Pt in the surface, creating a new (Pt, Pd)-Co system which enables phase transitions at lower temperatures (400°C).
  • At higher temperatures, excessive diffusion alters the material's composition and results in decreased atomic ordering and changes in shape, highlighting how understanding these processes can aid in designing better multi-component catalyst systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!