The effect of the length of pendant side chains in centrosymmetric quadrupolar molecules on dynamics of their most perplexing photophysical phenomenon, i.e., symmetry-breaking intramolecular charge transfer, has been discovered. Unexpectedly, considerable influence of length of these pendant side chains in π-linkers arose as a structural factor enabling the control of the degree of fluorescence solvatochromism. The symmetry-breaking intramolecular charge-transfer dynamics has been described on quadrupolar diketopyrrolopyrrole derivatives possessing fluorene moieties as π-linkers and diarylamino groups as electron donors. On the basis of the evolution of transient fluorescence spectra obtained by a femtosecond broadband fluorescence up-conversion spectroscopy, it was found that the relative contribution of diffusive solvation and torsional relaxation in overall spectral relaxation can be modulated by the length of pendant side chain in π-linkers. Consequently, we demonstrated that this modulation plays a significant role in determining the photophysical properties of diketopyrrolopyrroles in a polar medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.6b01248 | DOI Listing |
Data Brief
February 2025
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada.
Tenofovir alafenamide (TAF) is currently administered orally to patients for treatment of chronic hepatitis B virus infection and as a part of a combination therapy for human immunodeficiency virus (HIV) infection. A long-acting delivery system could provide several advantages as a formulation strategy for this drug including improved patient adherence, convenience, more consistent drug levels and potentially fewer side effects. To date, the vast majority of polymer-based long-acting delivery systems have been prepared from poly(lactide--glycolide) [1].
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
Org Biomol Chem
December 2024
Department of Chemistry, New York University, New York, New York 10003, USA.
We report the use of unprotected amino acids as submonomer reagents in the solid-phase synthesis of -substituted glycine peptoid oligomers. Subsequent coupling of an amine, alcohol, or thiol to the free carboxylate of the incorporated amino acid provides access to peptoids bearing amides, esters, and thioesters as side chain pendant groups and permits further elongation of the peptoid backbone. The palette of readily obtained building blocks suitable for solid-phase peptoid synthesis is substantially expanded through this protocol, further enhancing the chemical diversity and potential applications of sequence-specific peptoid oligomers.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Chair of Macromolecular Chemistry, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
Postpolymerization modifications are valuable techniques for creating functional polymers that are challenging to synthesize directly. This study presents aliphatic polycarbonates with pendant thiol-reactive groups for disulfide formation with mercaptans. The reductive responsive nature of this reaction allows for reversible postpolymerization modifications on biodegradable scaffolds.
View Article and Find Full Text PDFDalton Trans
December 2024
Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
The coordination sphere and steric variations in iron catalysts present a fascinating strategy for adjusting monomer regio- and stereoselective enchainment, leading to the development of novel polymer structures in isoprene polymerization. This study investigates a range of iron complexes with variations in the coordination spheres (bidentate and tridentate) and steric/electronic properties of side arms to evaluate their impact on isoprene polymerization. X-ray analysis revealed that the tridentate Fe-NMe2 complex has a dinuclear structure with a -O bridge, where each iron center is monoligated in an octahedral geometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!