This Article reports on thermally induced reversible formation of physically cross-linked, three-dimensional network hydrogels from aqueous dispersions of thermosensitive diblock copolymer brush-grafted silica nanoparticles (hairy NPs). The hairy NPs consisted of a silica core, a water-soluble polyelectrolyte inner block of poly(2-(methacryloyloxy)ethyltrimethylammonium iodide), and a thermosensitive poly(methoxydi(ethylene glycol) methacrylate) (PDEGMMA) outer block synthesized by sequential surface-initiated atom transfer radical polymerizations and postpolymerization quaternization of tertiary amine moieties. Moderately concentrated dispersions of these hairy nanoparticles in water underwent thermally induced reversible transitions between flowing liquids to self-supporting gels upon heating. The gelation was driven by the lower critical solution temperature (LCST) transition of the PDEGMMA outer block, which upon heating self-associated into hydrophobic domains acting as physical cross-linking points for the gel network. Rheological studies showed that the sol-gel transition temperature decreased with increasing hairy NP concentration, and the gelation was achieved at concentrations as low as 3 wt %.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b06009DOI Listing

Publication Analysis

Top Keywords

physically cross-linked
8
network hydrogels
8
hairy nanoparticles
8
thermally induced
8
induced reversible
8
hairy nps
8
pdegmma outer
8
outer block
8
hairy
5
thermally reversible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!